
Asynchronous
Programming

SWE 432, Fall 2016
Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• What is asynchronous programming?
• What are threads?
• How does JS keep the page interactive?
• Writing asynchronous code

2

For further reading:
Book: Programming HTML5 Applications, Chapter 5, “Web Workers” (Safari books online)

Book: Javascript with Promises, Chapters 1-2 (Safari books online)

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/

Using_web_workers

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

LaToza/Bell GMU SWE 432 Fall 2016

Why Asynchronous?
• Maintain an interactive application while still doing

stuff
• Processing data
• Communicating with remote hosts
• Timers that countdown while our app is running

• Anytime that an app is doing more than one thing
at a time, it is asynchronous

3

LaToza/Bell GMU SWE 432 Fall 2016 4

What is a thread?

App Starts

App Ends

Program execution: a series of sequential method calls (s)

LaToza/Bell GMU SWE 432 Fall 2016 5

What is a thread?

App Starts

App Ends

Program execution: a series of sequential method calls (s)

Multiple threads can run at once -> allows for
asynchronous code

LaToza/Bell GMU SWE 432 Fall 2016

Multi-Threading in Java
• Multi-Threading allows us to do more than one

thing at a time
• Physically, through multiple cores and/or OS

scheduler
• Example: Process data while interacting with user

6

main

thread 0

Interacts with user
Draws Swing interface

on screen, updates
screen

worker

thread 1

Processes data,
generates results

Share data
Signal each other

LaToza/Bell GMU SWE 432 Fall 2016 7

Woes of Multi-Threading

Thread 1 Thread 2
Write V = 4

Write V = 2
Read V (2)

Thread 1 Thread 2
Write V = 2

Write V = 4
Read V (4)

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

LaToza/Bell GMU SWE 432 Fall 2016

Multi-Threading in JS
• Everything you write will run in a single thread* (event loop)
• Since you are not sharing data between threads, races don’t

happen as easily
• Inside of JS engine: many threads
• Event loop processes events, and calls your callbacks

8

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

All of your code runs in this
one thread

event
queue

LaToza/Bell GMU SWE 432 Fall 2016

Event Being Processed:

The Event Loop

9

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

window:
hashChange

#newButton:
onClick

AJAX data
received

Pushes new event into queuePushes new event into queuePushes new event into queue

LaToza/Bell GMU SWE 432 Fall 2016

Event Being Processed:

The Event Loop

10

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

window:
hashChange

#newButton:
onClick

AJAX data
received

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

LaToza/Bell GMU SWE 432 Fall 2016

Event Being Processed:

The Event Loop

11

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

#newButton:
onClick

AJAX data
received

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

LaToza/Bell GMU SWE 432 Fall 2016

Event Being Processed:

The Event Loop

12

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

AJAX data
received

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

LaToza/Bell GMU SWE 432 Fall 2016

The Event Loop
• Remember that JS is event-driven

$(window).on('hashchange', function () {
 show(location.hash);
});

• Event loop is responsible for dispatching events
when they occur

• Main thread for event loop:
while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

13

LaToza/Bell GMU SWE 432 Fall 2016

Event Dispatching
• Each event target can have (0…n) listeners

registered for any given event type, called in
arbitrary order

• What happens with nested elements?

14

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

LaToza/Bell GMU SWE 432 Fall 2016

Event Bubbling

15

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior

Called

LaToza/Bell GMU SWE 432 Fall 2016

Event Capturing

16

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

Enable event capturing when you register your listener:
element.addListener(‘click’, myListener, true);

Called

LaToza/Bell GMU SWE 432 Fall 2016

Event Dispatching
• An individual listener can stop bubbling/capturing by calling
• event.stopPropagation();

• Assuming that event is the name of your handler’s parameter
• Or in jQuery, simply return false;

17

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

LaToza/Bell GMU SWE 432 Fall 2016

How do you write a “good” event handler?

• Run-to-completion
• The JS engine will not handle the next event until

your event handler finishes
• Good news: no other code will run until you finish

(no worries about other threads overwriting your
data)

• Bad/OK news: Event handlers must not block
• Blocking -> Stall/wait for input (e.g. alert(), non-

async network requests)
• If you *must* do something that takes a long time

(e.g. computation), split it up into multiple events

18

LaToza/Bell GMU SWE 432 Fall 2016

More Properties of Good Handlers

• Remember that event events are processed in the
order they are received

• Events might arrive in unexpected order
• Handlers should check the current state of the app

to see if they are still relevant

19

Event Queue

User closed divAJAX data
received for div

Example: Preload some data for a div

Potential problem: div will go away before data comes back

LaToza/Bell GMU SWE 432 Fall 2016

Benefits vs. Explicit Threading (Java)

• Writing your own threads is reason about and get
right:
• When threads share data, need to ensure they

correctly synchronize on it to avoid race
conditions

• Main downside to events:
• Can not have slow event handlers
• Can still have races, although easier to reason

about

20

LaToza/Bell GMU SWE 432 Fall 2016

When good requests go bad
• It can be tricky to keep track of the status of our

asynchronous requests: what happens if they
cause an error?

• Most async functions let you register a second
callback to be used in case of errors

• Example (Firebase, retrieves a todo):
todosRef.child(keyToGet).once('value', function(foundTodo){ 
 //found the TODO, here it is: foundTodo.val().text 
}, function(error){ 
 //something went wrong 
});

• You *must* check for errors and fail gracefully

21

LaToza/Bell GMU SWE 432 Fall 2016

Error handling can get messy
• Let’s take the example from the last slide and do

something with the returned value, like copy it

22

todosRef.child(keyToGet).once('value', function(foundTodo){ 
 todosRef.push({'text' : "Seriously: " + foundTodo.val().text},

 function(error) 
 {  
 if(error != null)  
 { 
 //something went wrong 
 }  
 else 
 {  
 console.log("OK!"); 
 } 
 });

}, function(error){ 
 //something went wrong 
  
});

Problems:
Will have repeated error handlers

Starts to look nasty after a lot of nesting!

LaToza/Bell GMU SWE 432 Fall 2016

Promises
• Promises are a wrapper around async callbacks
• Promises represents how to get a value
• Then you tell the promise what to do when it gets it
• Promises organize many steps that need to happen

in order, with each step happening asynchronously
• At any point a promise is either:

• Is unresolved
• Succeeds
• Fails

23

LaToza/Bell GMU SWE 432 Fall 2016

Writing a Promise
• Basic syntax:

• do something (possibly asynchronous)
• when you get the result, call resolve() and pass the final result
• In case of error, call reject()

24

var p = new Promise(function(resolve,reject){ 
 // do something, who knows how long it will take? 
 if(everythingIsOK) 
 { 
 resolve(stateIWantToSave); 
 } 
 else 
 reject(Error("Some error happened")); 
});

LaToza/Bell GMU SWE 432 Fall 2016

Writing a Promise
• loadImage returns a promise to load a given image
function loadImage(url){ 
 return new Promise(function(resolve, reject) { 
 var img = new Image(); 
 img.src=url; 
 img.onload = function(){ 
 resolve(img); 
 } 
 img.onerror = function(e){ 
 reject(e); 
 } 
 }); 
}

25

Once the image is loaded, we’ll resolve the promise

If the image has an error, the promise is rejected

LaToza/Bell GMU SWE 432 Fall 2016

Using a Promise
• Just declare what you want to do when your promise

is completed (then), or if there’s an error (catch)
var imgPromise = loadImage("GMURGB.jpg");
imgPromise.then(function (img){ 
 document.body.appendChild(img); 
}).catch(function(e){ 
 console.log("Oops"); 
 console.log(e); 
});

• Advantages:
• Easier to read
• Can be used to chain many actions together that

might happen asynchronously

26

LaToza/Bell GMU SWE 432 Fall 2016

Promising many things
• Can also specify that *many* things should be done,

and then something else
• Example: load a whole bunch of images at once:
Promise
 .all([loadImage("GMURGB.jpg"), loadImage(“JonBell.jpg")]) 
 .then(function (imgArray) { 
 imgArray.forEach(img => {document.body.appendChild(img)}) 
 })
 .catch(function (e) { 
 console.log("Oops");  
 console.log(e); 
 });

27

LaToza/Bell GMU SWE 432 Fall 2016 28

Promise one thing then another!
Promise to get

some data

Promise to make
some changes to

that data

then

then

Report on those
changes to the

user

Report on the
error

If there’s an error…

If there’s an error…

LaToza/Bell GMU SWE 432 Fall 2016 29

Chaining Promises
myPromise.then(function(resultOfPromise){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep; 
})
.then(function(resultOfStep1){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep 
})
.then(function(resultOfStep2){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep 
})
.then(function(resultOfStep3){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep 
})
.catch(function(error){ 
  
});

LaToza/Bell GMU SWE 432 Fall 2016

A promise to return a value

Promises in Action
• Example: Firebase interactions can be used as promises,

rather than directly using callbacks
• Old:
todosRef.child(keyToGet).once('value', function(foundTodo){ 
 //found the TODO, here it is: foundTodo.val().text 
}, function(error){ 
 //something went wrong 
});

• With Promises:
todosRef.child(keyToGet).once('value').then(function(foundTodo){ 
 
}).catch( 
function(error) 
{  
  
});

• Starts to read more like a sentence

30

LaToza/Bell GMU SWE 432 Fall 2016

Promises in Action
• Firebase example: get some value from the

database, then push some new value to the
database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){ 
 return foundTodo.val().text;  
})
.then(function(theText){ 
 todosRef.push({'text' : "Seriously: " + theText}); 
})
.then(function(){ 
 console.log("OK!"); 
})
.catch(function(error){ 
 //something went wrong 
});

31

Do this
Then, do this

Then do this

And if you ever had an error, do this

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Promises
• Update our running Todo App
• Add new button: Make important

• Will add !! to start and end of each todo item
• We want to show a loading icon until *all* of the

todo items are updated
• But: need to handle error case: what happens if

the request doesn’t succeed?

32

https://gmu-swe432.github.io/lecture8demos/public/
lecture8Demo1Finished.html

https://github.com/gmu-swe432/lecture8demos/tree/master/
public

https://gmu-swe432.github.io/lecture8demos/public/lecture8Demo1Finished.html
https://gmu-swe432.github.io/lecture8demos/public/lecture8Demo1Finished.html
https://github.com/gmu-swe432/lecture8demos/tree/master/public
https://github.com/gmu-swe432/lecture8demos/tree/master/public

LaToza/Bell GMU SWE 432 Fall 2016 33

Web Workers

Web Workers represent new threads of execution

LaToza/Bell GMU SWE 432 Fall 2016

Web Workers
• Web Workers allow you to run arbitrary code in the

background, without affecting the performance of your
page

• Web Workers:
• Must be defined in separate files
• Can not access document, window, or parent

objects (so no DOM manipulation)
• Should mainly be used for performing long, intensive

computation (text parsing, image processing, big
data)

• Communicate with the rest of your app with messages

34

LaToza/Bell GMU SWE 432 Fall 2016

Web Worker API
• Defining a new worker
var worker = new Worker('worker.js');

• Registering a listener to hear results from the worker
worker.addEventListener("message", function(e){ 
 console.log("Message from worker: <" + e.data + ">");  
});
worker.addEventListener("error", function(e){ 
 console.log(“Uh oh"); 
});

• Sending data to the worker
worker.postMessage("Hello");

• In the worker: registering for messages from the main thread,
sending responses

self.addEventListener('message', function(e) { doSomething(); }); 
self.postMessage(“Greetings from the Worker");

• Including additional scripts:
importScripts('script2.js');

• Kill a worker:
worker.terminate();

35

LaToza/Bell GMU SWE 432 Fall 2016

Passing Messages with Web Workers

• Can pass string or object
• Objects are passed by value

• Good news: reduces concurrency programming
errors

• Bad news: passing a big (10’s of MB’s) object
will be slow

• Alternative: transfer an object
• No longer exists in the original thread
• Syntax:

worker.postMessage(myObject, [myObject]);

36

LaToza/Bell GMU SWE 432 Fall 2016 37

Web Workers: Example

self.addEventListener('message', function(e) { 
 self.postMessage("Worker is sending back the text:" + e.data); 
}, false);

<script language="javascript">  
 "use strict";  
 var worker = new Worker('worker.js');  
 worker.addEventListener("message", function(e){ 
 console.log("Message from worker: <" + e.data + ">"); 
 }); 
 worker.postMessage("Hello"); 
 worker.postMessage("How's it going over there, worker?"); 
 worker.terminate(); 
</script>

Defining a web worker in worker.js

Using a web worker in our web app

LaToza/Bell GMU SWE 432 Fall 2016

When should you use web workers?

• Mainly for computational stuff:
• Image manipulation
• Map routing (without going off to server)
• Numerical methods

• Remember: can *not* interact with DOM in web
worker

38

LaToza/Bell GMU SWE 432 Fall 2016 39

Web Workers Demo
Calculating Pi iteratively

function CalculatePi(loop) 
{  
 var n=1;  
 var c = parseInt(loop); 
 console.log(loop); 
 for (var i=0,Pi=0;i<=c;i++) { 
 Pi=Pi+(4/n)-(4/(n+2)); 
 n=n+4;  
 } 
 return Pi;  
}

https://gmu-swe432.github.io/lecture8demos/public/
WebWorkerDemoFinished.html

https://github.com/gmu-swe432/lecture8demos/tree/master/
public

https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://github.com/gmu-swe432/lecture8demos/tree/master/public
https://github.com/gmu-swe432/lecture8demos/tree/master/public

Exit-Ticket Activity

1: How well did you understand today's material
2: What did you learn in today's class?

For question 3: What is a promise used for?

Go to socrative.com and select “Student Login”
Class: SWE432001 (Prof LaToza) or SWE432002 (Prof Bell)

ID is your @gmu.edu email

http://socrative.com
http://gmu.edu

