npm-follower: A Complete Dataset Tracking the NPM Ecosystem

Donald Pinckney
pinckney.d@northeastern.edu

Northeastern University
USA

Arjun Guha
a.guha@northeastern.edu
Northeastern University
USA

ABSTRACT

Software developers typically rely upon a large network of depen-
dencies to build their applications. For instance, the NPM package
repository contains over 3 million packages and serves tens of bil-
lions of downloads weekly. Understanding the structure and nature
of packages, dependencies, and published code requires datasets
that provide researchers with easy access to metadata and code of
packages. However, prior work on NPM dataset construction typi-
cally has two limitations: 1) only metadata is scraped, and 2) pack-
ages or versions that are deleted from NPM can not be scraped.
Over 330,000 versions of packages were deleted from NPM between
July 2022 and May 2023. This data is critical for researchers as it
often pertains to important questions of security and malware. We
present npm-follower, a dataset and crawling architecture which
archives metadata and code of all packages and versions as they are
published, and is thus able to retain data which is later deleted. The
dataset currently includes over 35 million versions of packages, and
grows at a rate of about 1 million versions per month. The dataset
is designed to be easily used by researchers answering questions
involving either metadata or program analysis. Both the code and
dataset are available at https://dependencies.science.

CCS CONCEPTS

« Software and its engineering — Software libraries and repos-
itories.

KEYWORDS

NPM, dependency-management, JavaScript, data mining, archiving

ACM Reference Format:

Donald Pinckney, Federico Cassano, Arjun Guha, and Jonathan Bell. 2023.
npm-follower: A Complete Dataset Tracking the NPM Ecosystem. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °23),
December 3-9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3611643.3613094

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °23, December 3-9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12.

https://doi.org/10.1145/3611643.3613094

2132

Federico Cassano
cassano.f@northeastern.edu

Northeastern University
USA

Jonathan Bell
j.bell@northeastern.edu
Northeastern University

USA

1 INTRODUCTION

Modern software development relies extensively on a complex net-
work of reusable open-source software components (packages). The
largest [6] repository of packages is the NPM repository, which con-
tains over three million packages, and 35 million different versions
of packages while serving tens of billions of downloads weekly.
Practically every JavaScript application depends on packages from
the NPM repository. Understanding the NPM ecosystem, including
distribution properties, versioning, and dependency relations is an
important component for reasoning about JavaScript software de-
velopment practices [14, 36], security [3, 12, 21], program analysis
[8, 18, 20, 30] and more.

Existing package repository datasets, such as 1ibraries.io [35]
and DaSEA [4], provide a wealth of information about dependency
structure, author information, etc., even across multiple package
ecosystems. However, these datasets are typically limited in two
ways: (1) only storing metadata and not code of packages; and (2) not
maintaining historic data when packages or versions of packages
are unpublished or deleted from NPM. Unfortunately, packages
are often deleted from NPM. Between July 12, 2022, and May 10,
2023, we have detected 335,325 versions of packages that have been
deleted. This loss of data is problematic for data availability and
artifact reproducibility for research which may use package data
(regression testing [19], static analysis [8], training large-language
models [15], etc.), and makes research areas that specifically exam-
ine deleted packages (such as malware analysis) nearly impossible
without privileged access [32].

We present npm-follower as a platform to enable easier re-
search on the NPM ecosystem. We believe that npm-follower of-
fers two main benefits. First, npm-follower continually collects
and archives packages, and thus retains data (including package
code!) which is later deleted from NPM. Second, npm-follower
scrapes and indexes multiple sources of data (developer-provided
metadata, code, download metrics and security advisories), allow-
ing researchers to easily write analyses which touch many aspects
of the NPM ecosystem. The npm-follower dataset and source code
is available at https://dependencies.science, and we hope that it will
be useful to the research community.

!Note that npm-follower collects the code which is released by developers to NPM,
which may be different from the source code of a project’s GitHub repository (Sec-
tion 2).

https://orcid.org/0000-0001-8612-5178
https://orcid.org/0000-0002-9318-7454
https://orcid.org/0000-0002-7493-3271
https://orcid.org/0000-0002-1187-9298
https://dependencies.science
https://doi.org/10.1145/3611643.3613094
https://doi.org/10.1145/3611643.3613094
https://dependencies.science

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

2 RELATED WORK

A variety of existing tools scrape data from software ecosystems.
Roughly, these can be divided into two areas: those that include
metadata only, and those that store source code.

The libraries.io [35] website hosts a dataset of metadata
spanning multiple package managers, and is quite detailed. How-
ever, Buchkova et al. [4] report that it is not well maintained and
does not include metadata for all versions of packages, and in re-
sponse introduced the DaSEA dataset which is a cross-ecosystem
dataset containing metadata for versions of packages. Unfortu-
nately, DaSEA does not include NPM (the largest and fastest grow-
ing repository [6]). In addition, neither libraries.io nor DaSEA
store package code themselves. Thus, to perform package code
analysis one would have to download package code from NPM,
which is time and labor intensive, and is impossible for packages
that have been deleted from NPM.

On the other hand, large-scale projects exist which archive not
only metadata but also source code. GHTorrent [11] and World
of Code [17] collect and archive source code from VCS hosting
platforms (GitHub, etc.). Unfortunately, GHTorrent appears to be
unmaintained, and both focus on scraping VCS data rather than
package manager repositories. Packages uploaded to NPM do not
necessarily have an associated (public) VCS repository, and code
uploaded to NPM may in fact be different from source code in a
VCS repository, so these are related but complementary sources of
data. The Software Heritage archive [13] collects the full source
code of packages across multiple software ecosystems, including
NPM. However, the Software Heritage archive performs intermit-
tent scraping, similar to the Wayback Machine [1], so it is not able
to download packages which are uploaded and deleted in-between
scrapes. In contrast, npm-follower receives updates from the NPM
repository and downloads new packages as they appear with low
latency (Section 4.2).

Using software ecosystem datasets, researchers are able to ex-
amine many interesting research topics, such as technical lag [10],
versioning [29, 37], micro packages [16], static analysis [8], mal-
ware analysis [25, 32, 38, 39], security vulnerability analysis [5, 7]
and more, all of which need access to either metadata or package
source code data. In our prior work, we used NPM ecosystem data
to evaluate our technique for optimal dependency solving [27], and
to understand how developers make use of semantic versioning
and updates in practice [26]. The first version of npm-follower
was born out of that work, and since then we have provided more
built-in analyses, added scraping of package download metrics, and
continued to improve reliability. In this paper we discuss key design
decisions of npm-follower, as well as challenges for sustainability
of the system.

3 USING NPM-FOLLOWER

The npm-follower dataset is useful for answering research ques-
tions involving metadata and/or source code analysis, such as eval-
uation of static analysis tooling, detection of malware, or training
code large-language models. To illustrate how npm-follower could
be used in such research, we present a hypothetical example of vul-
nerability impact analysis [28, 33], which has the goal of identifying
client libraries that may be impacted by a security vulnerability

2133

Donald Pinckney, Federico Cassano, Arjun Guha, and Jonathan Bell

e Advisories
e Vulnerable Versions
e CWEs

o Packages
e Versions !

-

e Dependencies

[o Download Metrics }

Figure 1: Conceptual structure of the npm-follower database.

in a dependency, and if the vulnerable code is in fact reachable
from the client. We can use npm-follower to perform the first half
of that task: finding pairs of clients and dependencies, where the
dependency has a vulnerability. To do so, we will first work on
building the set of dependencies, and then match them with de-
pendent clients. A variant of this example is available as a video
demonstration. ?

3.1 Finding Packages with Vulnerabilities

In addition to package metadata, npm-follower also scrapes secu-
rity advisories from the GitHub Advisory Database. We can find
packages that have vulnerabilities by joining the table of packages
(center of Figure 1) with the table of vulnerabilities (top of Figure 1):

select ...

from packages vuln_p

join vulnerabilities vuln on vuln_p.name = vuln.package_name

However, in order to obtain a smaller, more focused dataset we

may wish to only select packages which also have a decent number
of downloads. We may accomplish this by additionally joining
scraped download metrics (bottom of Figure 1) and keeping only
those with over 1 million weekly downloads:

Jom download_metrics m on m.package_id = vuln_p.id
and (m.download_counts[array_upper(m.download_counts, 1)1).counter
> 1000000

Note that the code outlined here does not distinguish different ver-
sions of a vulnerable package, even though typically vulnerabilities
only affect some versions. A more complex analysis that selects
specific versions of packages that are vulnerable is possible with
npm-follower, and in fact already has a reusable implementation
(Section 4.1.2).

3.2 Determining Dependent Clients

Now that we have a set of packages that contain security vulnerabil-
ities, we can find a corresponding set of dependent client package
versions by using a relation describing the dependencies of each
version of each package:

join metadata_analysis.version_direct_runtime_deps edge
on edge.depends_on_pkg = vuln_p.id
join versions client on client.id = edge.v

Zhttps://youtu.be/OgLY ThRJhdc?si=V6krLg3LzUvUeH7u

https://youtu.be/OgLYThRJhdc?si=V6krLg3LzUvUeH7u

npm-follower: A Complete Dataset Tracking the NPM Ecosystem

This dependency relation table is not part of the core data model
of npm-follower but is computed from the core tables with a pro-
vided analysis implementation. As above, this simple query does
not take into account the version of the vulnerable package, so
it may be that the clients depend on non-vulnerable versions. If
needed, this may be addressed by writing a more complex query
on the dependency version constraint data structure (Section 4.1.2).

Finally, if we aim to use dynamic analysis techniques to look
at vulnerability impact in the clients, we may wish to only select
clients which have tests. Since npm-follower stores in original
JSON format all metadata it does not specifically extract, we may
use this to filter for tests:

and client.extra_metadata->'scripts'->'test' is not null

We have now completed finding our set of client and vulnerable
library pairs we wish to analyze, and can move on to retrieving
package code for these pairs.

3.3 Obtaining Package Code

We now would like to obtain the code, say for the clients, to pro-
ceed with our vulnerability impact analysis. One way would be to
read the client.tarball_url column from the query above and
download each tarball. Unfortunately, some of these URLs might
return 404 errors because developers could have unpublished those
versions due to depending on a vulnerability, leading to obtaining
a biased sample.

A different approach would be to use the npm-follower code
store (Section 4.2), which attempts to archive tarballs before they
are deleted. Doing so is easy, as all source code URLs map into the
object store, which can then be read from using npm-follower’s
tooling. After obtaining datasets of lists of vulnerable packages and
clients and associated source code, we are now in a good position
to explore exciting research techniques to determine vulnerability
impact.

4 DESIGN AND IMPLEMENTATION

When designing npm-follower, we had two primary design goals:
(1) it should be a comprehensive and easy to use dataset for analy-
sis of the NPM ecosystem; and (2) it should be able to be sustain-
ably run using our available hardware resources. Specifically, we
have available an academic Slurm-backed [31] HPC cluster with
around 25 TB of networked file storage, which we use for down-
loading and storing tarballs of package code. The metadata portion
of npm-follower is able to be run independently, on a single Linux
VM with 4 CPUs and 128 GB of RAM, currently requiring about
700 GB of SSD storage.

4.1 Package Metadata

While the most obvious contribution of npm-follower is in the
scraping and storing of package code data, we nevertheless designed
the metadata scraping and analysis component of npm-follower
to behave well in the presence of package deletions, and to use a
richer data model than prior work to enable more complex analyses.
The metadata of npm-follower is stored in PostgreSQL [34], which
provides for a consistent and easy to use data analysis platform
while providing sufficient throughput to index updates from NPM.

2134

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

4.1.1 Streaming and Parsing Updates. NPM offers a changes stream-
ing API [24] which allows us to stream updates (package / version
creation and deletion operations) in a JSON format without need-
ing to frequently crawl the NPM website. Unfortunately, the raw
JSON updates have two major problems: (1) the data is poorly struc-
tured with little validation, making basic data analysis difficult; and
(2) when a new version of a package is published, the corresponding
change notification contains all previous versions in addition to the
new version, which causes storage to grow quadratically with the
number of updates if naively storing all change notifications.

To better parse and index the metadata, npm-follower first val-
idates and cleans update events as it receives them, and inserts the
data into the relational database while de-duplicating repetitive
data. In addition, we carefully parse common metadata fields which
are useful for data analysis into interpretable data structures, includ-
ing version numbers, dependency version constraints, and GitHub
repository data. Metadata fields which we don’t specifically parse
(e.g. author’s names and emails) or fail to parse (e.g. invalid source
code repository URIs) are retained in JSON format and available for
querying. Additionally, data fields are not deleted when a package
(or version of a package) is deleted from NPM. Instead, the entity is
only marked with a deleted flag.

4.1.2 Querying Package Metadata. Three tables store the metadata
obtained from the NPM changes API: packages, versions and
dependencies, which collectively enumerate all versions of all
packages, and the dependencies of each version. These tables make
up the core data model of npm-follower (center of Figure 1), and
are typically the starting point of analyses.

Since npm-follower performs parsing on many metadata fields,
it is often possible to write SQL queries which directly interpret
these fields. The most interesting example is dependency version
constraints, which are parsed from their string format into disjunc-
tive normal form (DNF) over the total ordering of version numbers.
For example, the version constraint “12 || 13.0.1” would be
parsed into (X > 12.0.0 A X < 13.0.0) V (X > 13.0.1 A X < 13.1.0),
and finding a matching version then corresponds to finding a sat-
isfying assignment for X drawn from the set of versions of the
dependency. Matching versions can be computed in SQL by match-
ing candidate versions to each ordering term, and then aggregating
conjunctions followed by aggregating disjunctions.

In contrast, prior work [4, 35] only provides version constraints
as uninterpreted strings, and leaves it up to the user of the dataset
to interpret the constraints if desired. Interpreting constraints cor-
rectly either requires substantial work [27], or forces the analysis
pipeline to interoperate with a JavaScript package for interpreting
version constraints [22].

Since writing queries that operate on these interpreted data
structures is non-trivial, npm-follower includes a small library of
common analyses that users may wish to use and build on. Some
of these analyses include computing updates between versions of
packages®, resolutions of direct dependency version constraints,
transitive dependency graph computation, and identifying versions
of packages which contain a security vulnerability.

3tricky because version ordering and temporal ordering need not agree, see our prior
work for details on this analysis [26].

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

4.2 Code Acquisition and Storage

When npm-follower receives metadata updates that contain URLs
to new package code tarballs, npm-follower enqueues a download
job to then be handled by the code data downloading and storage
subsystem running on our HPC cluster.

Storing package code data is challenging, due to both the scale
(tens of millions of tarballs, 20+ TB) and the need to handle sufficient
concurrent writes. We did not explore using existing distributed
file systems such as Hadoop [9] due to concern of Hadoop’s scala-
bility with regards to storing many small files [2] (our use case). In
addition, we are unsure if Hadoop can run correctly and efficiently
on top of the networked file system at our disposal.

Instead, we store tarball data in a custom-built object storage
system stored on the networked file system. A manager node con-
trols access to the object storage, keeping track of byte offsets and
coordinating locks for writing, while individual worker nodes in
the HPC cluster perform the networked disk I/O. Download jobs
are dequeued from the work queue (enqueued by the metadata
subsystem) and assigned to worker nodes in the HPC cluster.

We have observed that the download latency (tarball published to
NPM — downloaded by npm-follower) has a bimodal distribution,
with one group of tarballs having quite low latency (about 30 s), and
another group of tarballs having higher latency (1 hour - 1day).
The higher latency downloads appear correlated with periods of
higher load, and may be caused both by unavoidable latency in NPM
sending change notifications, and latency within npm-follower
itself. Overall, we are able to download 98.8% of tarballs within a
latency of 24 hours, which is satisfactory for our purposes.

To allow data analysis jobs to read from the package code data
(right side of Figure 1), the manager node exposes a mapping of
tarball keys (derived from the downloaded_tarballs table) to un-
derlying file system location information (file name, byte offset,
number of bytes). To read a package code tarball, a worker node
first queries the manager node for the location on disk, and then it-
self performs the read from the underlying (networked) file system.
Fortunately, our software abstracts over this separation, allowing
for a simple cp-like command to read a file out of the object store
given a key. This system allows for large-scale concurrent reading
from the object storage to perform code analysis.

4.2.1 Tarball Size Distribution. Currently the object storage system
is about 24 TB in size and stores over 35 million tarballs. However,
the distribution of tarball sizes is extremely skewed (median =
18.4KB, mean = 730 KB), with the largest tarball being over 500 MB.
Based on this skewed distribution, one could consider trading-off
completeness for storage size. For instance, discarding all tarballs
greater than 16 MB would cut the total size in half, while retaining
99.12% of all tarballs. While most of these oversize tarballs belong
to obscure packages, sprinkled among them are popular packages,
such as the NPM CLI (52 MB, 890+ million downloads) and gherkin
(120 MB, 187+ million downloads). In the future we plan to investi-
gate better discarding strategies by incorporating both tarball size
and download metrics, in order to keep the storage requirements
for npm-follower sustainable.

2135

Donald Pinckney, Federico Cassano, Arjun Guha, and Jonathan Bell

4.3 Scraping External Metadata

Additionally, npm-follower scrapes two other sources of metadata:
security advisory metadata from the GitHub Security Advisory
Database (top of Figure 1) and package download metrics (bottom
of Figure 1).

The security advisory metadata lists security advisories for NPM
packages, which versions of packages are vulnerable, and applicable
CWEs. Our prior work used this security metadata in a prototype
of npm-follower to analyze the relationships between semantic
versioning and security effects [26]. The package download metrics
provide weekly time-series data on the number of downloads each
package receives, and are often useful for pre-filtering data prior to
other analyses, such as to focus on the top N downloaded packages.

Unlike the metadata of packages, for both security metadata and
download metrics we do not have a convenient changes API which
can notify us of new data, and in particular the scraping of package
download metrics [23] is challenging due to severe rate-limiting. To
scrape download metrics for all packages in a reasonable amount
of time, we must perform batch requests to the API, which unfortu-
nately precludes scraping per-version download metrics. With this
strategy, scraping download metrics for all packages takes about
four days. We estimate that if we did not batch requests it would
take about two weeks. If rate limits were to increase, we could
consider scraping per-version metrics in the future.

4.4 Adaptability to Other Ecosystems

In addition to NPM, many other package repositories are important
for software engineering, such as PyPI, APT and more. The general
architecture of npm-follower may be applied to create comprehen-
sive datasets of other ecosystems, depending on available APIs. The
main requirement is a change notification API, which is crucial for
enabling continual archiving of packages, and is central to the de-
sign of npm-follower. Designing a unified data model for multiple
ecosystems could be challenging while maintaining easy query-
ing and interpretable data structures, though prior work [4, 35]
has partially tackled this. To have a unified interpretable format
for version constraints, the DNF format of npm-follower may be
able to used as a low-level target to which high-level constraints
of various diverse syntaxes are parsed into. Investigating gener-
alizing npm-follower to allow for other ecosystems could be an
interesting direction for future work.

5 CONCLUSION

NPM is a quickly evolving and often unreliable archive of data, as
packages are deleted frequently. In this demonstration, we have
presented npm-follower, a scraper and dataset which continually
downloads and archives metadata and code from NPM packages. We
have further shown the utility of npm-follower for researchers
working in the area of program analysis or software ecosystem
analysis. The code and dataset, featuring a complete account of
the metadata and code of all versions of all packages is available
publicly at https://dependencies.science.

ACKNOWLEDGMENTS

This work was funded in part by NSF CCF-2102288, CCF-2100037
and NSF CNS-2100015.

https://dependencies.science

npm-follower: A Complete Dataset Tracking the NPM Ecosystem

REFERENCES

(1]

[2

(3

=

[4

=

=
=

[10]

[11

[12

[13

[14]

[15]

[18

[19

[20]

Internet Archive. 2023. Wayback Machine. https://web.archive.org. Accessed
May 5 2023.

Szele Balint. 2009. The Small Files Problem. https://blog.cloudera.com/the-small-
files-problem/. Accessed Mar 13 2023.

Sruthi Bandhakavi, Nandit Tiku, Wyatt Pittman, Samuel T. King, P. Madhusu-
dan, and Marianne Winslett. 2011. Vetting Browser Extensions for Security
Vulnerabilities with VEX. Commun. ACM 54, 9 (sep 2011), 91-99. https:
//doi.org/10.1145/1995376.1995398

Petya Buchkova, Joakim Hey Hinnerskov, Kasper Olsen, and Rolf-Helge Pfeiffer.
2022. DaSEA: A Dataset for Software Ecosystem Analysis. In Proceedings of
the 19th International Conference on Mining Software Repositories (Pittsburgh,
Pennsylvania) (MSR ’22). Association for Computing Machinery, New York, NY,
USA, 388-392. https://doi.org/10.1145/3524842.3528004

Bodin Chinthanet, Raula Gaikovina Kula, Shane McIntosh, Takashi Ishio, Akinori
Thara, and Kenichi Matsumoto. 2021. Lags in the release, adoption, and propa-
gation of npm vulnerability fixes. Empirical Software Engineering 26, 3 (30 Mar
2021), 47. https://doi.org/10.1007/s10664-021-09951-x

Erik DeBill. 2023. Modulecounts. http://www.modulecounts.com. Accessed May
52023.

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Impact of
Security Vulnerabilities in the Npm Package Dependency Network. In Proceedings
of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
181-191. https://doi.org/10.1145/3196398.3196401

Asger Feldthaus, Max Schifer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013.
Efficient construction of approximate call graphs for JavaScript IDE services.
In 2013 35th International Conference on Software Engineering (ICSE). 752-761.
https://doi.org/10.1109/ICSE.2013.6606621

The Apache Software Foundation. 2023. Apache Hadoop. https://hadoop.apache.
org. Accessed Mar 13 2023.

Jesus M. Gonzalez-Barahona, Paul Sherwood, Gregorio Robles, and Daniel
Izquierdo. 2017. Technical Lag in Software Compilations: Measuring How Out-
dated a Software Deployment Is. In Open Source Systems: Towards Robust Practices,
Federico Balaguer, Roberto Di Cosmo, Alejandra Garrido, Fabio Kon, Gregorio
Robles, and Stefano Zacchiroli (Eds.). Springer International Publishing, Cham,
182-192. https://doi.org/10.1007/978-3-319-57735-7_17

Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from
a firehose. In 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). 12-21. https://doi.org/10.1109/MSR.2012.6224294

Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. 2011. Saving the World Wide Web from Vulnerable JavaScript. In
Proceedings of the 2011 International Symposium on Software Testing and Analysis
(Toronto, Ontario, Canada) (ISSTA ’11). Association for Computing Machinery,
New York, NY, USA, 177-187. https://doi.org/10.1145/2001420.2001442
Software Heritage. 2023. Software Heritage. https://www.softwareheritage.org.
Accessed May 5 2023.

David Kavaler, Asher Trockman, Bogdan Vasilescu, and Vladimir Filkov. 2019.
Tool Choice Matters: JavaScript Quality Assurance Tools and Usage Outcomes
in GitHub Projects. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 476-487. https://doi.org/10.1109/ICSE.2019.00060

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Car-
los Muiioz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and Harm de Vries. 2022. The
Stack: 3 TB of permissively licensed source code. https://doi.org/10.48550/arXiv.
2211.15533 arXiv:2211.15533 [cs.CL]

Raula Gaikovina Kula, Ali Ouni, Daniel M. German, and Katsuro Inoue. 2017.
On the Impact of Micro-Packages: An Empirical Study of the npm JavaScript
Ecosystem. https://doi.org/10.48550/ARXIV.1709.04638

Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam
Tutko, David Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of
Code: Enabling a Research Workflow for Mining and Analyzing the Universe
of Open Source VCS Data. Empirical Softw. Engg. 26, 2 (mar 2021), 42 pages.
https://doi.org/10.1007/s10664-020-09905-9

Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Practical Static
Analysis of JavaScript Applications in the Presence of Frameworks and Libraries.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
(Saint Petersburg, Russia) (ESEC/FSE 2013). Association for Computing Machinery,
New York, NY, USA, 499-509. https://doi.org/10.1145/2491411.2491417
Gianluca Mezzetti, Anders Meller, and Martin Toldam Torp. 2018. Type Regres-
sion Testing to Detect Breaking Changes in Node.js Libraries. 109 (2018), 7:1-7:24.
https://doi.org/10.4230/LIPIcs.ECOOP.2018.7

Anders Mgller, Benjamin Barslev Nielsen, and Martin Toldam Torp. 2020. De-
tecting Locations in JavaScript Programs Affected by Breaking Library Changes.
Proc. ACM Program. Lang. 4, OOPSLA, Article 187 (nov 2020), 25 pages. https:
//doi.org/10.1145/3428255

2136

[21

[26

[27

[28

[29]

[30

w
=

(32

[33

[34

&
i

[36

[37

[38

[39

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Meller. 2021. Mod-
ular Call Graph Construction for Security Scanning of Node.Js Applications.
In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing
Machinery, New York, NY, USA, 29-41. https://doi.org/10.1145/3460319.3464836
NPM. 2022. semver(1) — The semantic versioner for npm. https://github.com/
npm/node-semver.

NPM and Contributors. 2022. package download counts. https://github.com/npm/
registry/blob/1c794110badd54b9d9fb08e7489746b6089¢6648/docs/download-
counts.md. Accessed Aug 19 2023.

NPM and Contributors. 2023. registry-follower-tutorial. https://github.com/npm/
registry-follower-tutorial. Accessed Mar 12 2023.

Marc Ohm, Felix Boes, Christian Bungartz, and Michael Meier. 2022. On
the Feasibility of Supervised Machine Learning for the Detection of Mali-
cious Software Packages. In Proceedings of the 17th International Conference
on Availability, Reliability and Security (Vienna, Austria) (ARES °22). Associ-
ation for Computing Machinery, New York, NY, USA, Article 127, 10 pages.
https://doi.org/10.1145/3538969.3544415

D. Pinckney, F. Cassano, A. Guha, and J. Bell. 2023. A Large Scale Analysis of
Semantic Versioning in NPM. In 2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR). IEEE Computer Society, Los Alamitos, CA,
USA, 485-497. https://doi.org/10.1109/MSR59073.2023.00073

Donald Pinckney, Federico Cassano, Arjun Guha, Jonathan Bell, Massimiliano
Culpo, and Todd Gamblin. 2023. Flexible and Optimal Dependency Management
via Max-SMT. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1418-1429.
https://doi.org/10.1109/ICSE48619.2023.00124

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, assess-
ment and mitigation of vulnerabilities in open source dependencies. Empirical
Software Engineering 25, 5 (01 Sep 2020), 3175-3215. https://doi.org/10.1007/
510664-020-09830-x

S. Raemaekers, A. van Deursen, and J. Visser. 2014. Semantic Versioning ver-
sus Breaking Changes: A Study of the Maven Repository. In 2014 IEEE 14th
International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE Computer Society, Los Alamitos, CA, USA, 215-224. https:
//doi.org/10.1109/SCAM.2014.30

Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An Analysis
of the Dynamic Behavior of JavaScript Programs. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Toronto, Ontario, Canada) (PLDI ’10). Association for Computing Machinery,
New York, NY, USA, 1-12. https://doi.org/10.1145/1806596.1806598

SchedMD and Contributors. 2023. Slurm Workload Manager — Documentation.
https://slurm.schedmd.com. Accessed Mar 12 2023.

Adriana Sejfia and Max Schifer. 2022. Practical Automated Detection of Malicious
Npm Packages. In Proceedings of the 44th International Conference on Software
Engineering (Pittsburgh, Pennsylvania) (ICSE 22). Association for Computing
Machinery, 1681-1692. https://doi.org/10.1145/3510003.3510104
Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study
of ReDoS Vulnerabilities in Javascript-Based Web Servers. In Proceedings of the
27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18).
USENIX Association, USA, 361-376.

The PostgreSQL Global Development Group. 2023. PostgreSQL: The World’s
Most Advanced Open Source Relational Database. https://www.postgresql.org.
Accessed Mar 12 2023.

Inc Tidelift. 2023. Libraries.io - The Open Source Discovery Service. https:
//libraries.io. Accessed May 5 2023.

Kristin Fj6la Tomasdottir, Mauricio Aniche, and Arie Van Deursen. 2020. The
Adoption of JavaScript Linters in Practice: A Case Study on ESLint. IEEE Trans-
actions on Software Engineering 46, 8 (2020), 863-891. https://doi.org/10.1109/
TSE.2018.2871058

Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In Proceedings of the 13th In-
ternational Conference on Mining Software Repositories (Austin, Texas) (MSR
’16). Association for Computing Machinery, New York, NY, USA, 351-361.
https://doi.org/10.1145/2901739.2901743

Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What Are Weak Links in the Npm
Supply Chain?. In Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice (Pittsburgh, Pennsylvania) (ICSE-
SEIP °22). Association for Computing Machinery, New York, NY, USA, 331-340.
https://doi.org/10.1145/3510457.3513044

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Smallworld with High Risks: A Study of Security Threats in the Npm
Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium
(Santa Clara, CA, USA) (SEC’19). USENIX Association, USA, 995-1010.

Received 2023-05-11; accepted 2023-07-20

https://web.archive.org
https://blog.cloudera.com/the-small-files-problem/
https://blog.cloudera.com/the-small-files-problem/
https://doi.org/10.1145/1995376.1995398
https://doi.org/10.1145/1995376.1995398
https://doi.org/10.1145/3524842.3528004
https://doi.org/10.1007/s10664-021-09951-x
http://www.modulecounts.com
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1109/ICSE.2013.6606621
https://hadoop.apache.org
https://hadoop.apache.org
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1145/2001420.2001442
https://www.softwareheritage.org
https://doi.org/10.1109/ICSE.2019.00060
https://doi.org/10.48550/arXiv.2211.15533
https://doi.org/10.48550/arXiv.2211.15533
https://arxiv.org/abs/2211.15533
https://doi.org/10.48550/ARXIV.1709.04638
https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1145/2491411.2491417
https://doi.org/10.4230/LIPIcs.ECOOP.2018.7
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3460319.3464836
https://github.com/npm/node-semver
https://github.com/npm/node-semver
https://github.com/npm/registry/blob/1c794110badd54b9d9fb08e7489746b6089c6648/docs/download-counts.md
https://github.com/npm/registry/blob/1c794110badd54b9d9fb08e7489746b6089c6648/docs/download-counts.md
https://github.com/npm/registry/blob/1c794110badd54b9d9fb08e7489746b6089c6648/docs/download-counts.md
https://github.com/npm/registry-follower-tutorial
https://github.com/npm/registry-follower-tutorial
https://doi.org/10.1145/3538969.3544415
https://doi.org/10.1109/MSR59073.2023.00073
https://doi.org/10.1109/ICSE48619.2023.00124
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1145/1806596.1806598
https://slurm.schedmd.com
https://doi.org/10.1145/3510003.3510104
https://www.postgresql.org
https://libraries.io
https://libraries.io
https://doi.org/10.1109/TSE.2018.2871058
https://doi.org/10.1109/TSE.2018.2871058
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1145/3510457.3513044

