Continuously Accelerating Research

Abstract—Scientific research is faces a software crisis. Software
powers experimentation, and fuels insights, yielding new scientific
contributions. Yet, the research software that we develop is
often difficult for other researchers to reproducibly run. Even
if research results can be reproduced, creating research software
that is truly reusable, and can be easily extended by other
researchers. As software engineering researchers, we believe that
it is our duty to create tools and processes to instill these qualities
of reusability and reproducibility in research software throughout
the development process. This paper outlines a vision for a
community infrastructure that will bring the benefits of contin-
uous integration to scientists developing research software. This
approach will appeal to researcher’s intrinsic self-motivations by
making it easier to develop and evaluate research prototypes. This
is a complex socio-technical problem that requires stakeholders
to join forces to solve this problem for the software engineering
community, and the greater scientific community as a whole.
This vision paper outlines an agenda to realize a world where
the reproducibility and reusability barriers in research software
are lifted, continuously accelerating research.

I. INTRODUCTION

Reproduction is the cornerstone of science. We use it to
ensure that findings generalize. Unfortunately, science is cur-
rently suffering from a reproducibility crisis. In 2005, Profes-
sor Ioannidis of Stanford’s School of Medicine provocatively
proclaimed that most published research findings are false [/1].
The crisis is ongoing. In a 2016 survey by Nature found that
more than 70% of researchers failed to reproduce published
results [2] and the website Retraction Watch [3]] recorded over
1433 retractions in 2019 [4]].

A finding is replicable when the experiment that produced
it is meticulously described in enough detail that other re-
searchers can, from its description alone, conduct the ex-
periment and obtain the finding. Experiments — throughout
science — increasingly rely on software. In this case, authors
might share an artifact along with their findings, so that
the results can be reproduced by running the same software.
However: due to the complexity of user interfaces, the abun-
dance of software defects, dependencies on evolving libraries,
and the wide variety of execution environments, software is
often not reproducible. Thus, software reproducibility is a key
dimension of the replication crisis.

Lack of software reproducibility introduces a key problem
beyond the traditional problem of unvalidated results: waste.
To reuse an artifact, researchers are required to spend their
valuable time and energy on repetitive, manual tasks rather
than focusing on discovery and innovation. Instead of “stand-
ing on the shoulders of giants,” researchers are required to
implement those same giants over and over again. Over time,
these wasted efforts inhibit the pace of research and make it
harder for newcomers to enter the field.

Clearly, action is needed. We must accelerate science gen-
erally to address problems, like climate change, for which
technical solutions may exist. However, because of software’s
uptake in science, software reproducibility is an increasingly
important component of reproducibility writ large and it is
inherently a software engineering problem. It orbits core
software engineering concerns: software process, documenta-
tion, future-proofing, maintainability, efficient execution, and
portability. Software engineers are, therefore, best placed to
tackle it; indeed, given the stakes, it is our community’s duty to
rise this challenge and act to make software more reproducible.

Low reusability and reproducibility of software artifacts
greatly reduces the pace of scientific research. To continuously
accelerate research, the we must build infrastructure and
implement processes that instill reusability and reproducibility
in software artifacts. Engineering reusable software artifacts
is not enough. We also must simultaneously incentivize re-
searchers not only to use this infrastructure, but to contribute
to its design, development, and deployment.

There have been many efforts to improve the software repro-
duction crisis within the field of software engineering, such as
artifact evaluation. However, these efforts have also exposed
new challenges: even artifacts that aim to ensure perpetual
reproducibility are subject to decay, and researchers struggle
to effectively reuse them. At the same time, new software
process paradigms like continuous integration (CI) have been
widely adopted in industry, allowing teams to “shift left” on
testing by running large test suites far more regularly. Despite
its potential to improve reproducibility and reusability, CI is
not widely adopted in the development of research software.
We propose a research agenda that synergistically improves the
software process to tackle the software reproducibiilty crisis
and outline open problems.

II. REPRODUCIBILITY IN SOFTWARE ENGINEERING

Neither the reproducibiliity crisis or science’s increasing
reliance on software are new. So, it is not surprising that our
community introduced artifact evaluation (first at ESEC/FSE
in 2011 [5]) to tackle the lack of software reproducibility.

Artifact evaluation is a process to assess the reusability
of tools and the reproducibility of experiments that support
research articles. This process is now a commonplace process
at most software engineering conferences. The process has
evolved significantly over the past decade, and has also been
adopted by many other communities. However, there remain
significant challenges: recent surveys have shown that authors
and reviewers have differing expectations for artifact construc-
tion and evaluation [|6], [7]. Moreover, a retrospective analysis
of artifacts published in the SE community over the past ten



years has not shown that artifacts which are evaluated are
reused more frequently than those that are not evaluated [§].

Ideally, reusable artifacts should lower the barriers to entry
for newcomers to a field. For example: imagine if a researcher
who specializes in genetic algorithms might want to design a
new tool to automatically synthesize patches to repair defects
in software. Rather than implement an entire program repair
tool and evaluation script themselves, they should be able to
reuse existing artifacts. Software artifacts might be found by
reference in research articles, or in repositories that collect
artifacts [9], [[10]. However, simply finding a relevant artifact
is not sufficient to effectively reuse it, since researchers need
to be able to execute them at scale. Even in the case of
program repair, where a very well-documented evaluation
artifact exists [11]], it does not provide the infrastructure to
actually execute the artifact using cloud resources. In fact,
it is distributed with the following disclaimer: “Warning: the
experiment took 313 days of combined execution time.” While
it is certainly possible to parallelize this evaluation using con-
tainerization and cloud computing resources, operationalizing
artifacts like these requires specialized distributed systems
knowledge that can prevent newcomers from contributing.

At the dawn of artifact evaluation, there was much discus-
sion over what incentives would be necessary to encourage au-
thors to create and share their artifacts. Since then, surveys of
authors [7]], [12] and post-hoc analyses of bibliometric data [J]],
[12] have shown that incentives may not be well-aligned. Part
of the challenge in building reusable artifacts is that the goals
of “reusability” and “repeatability” are often after-thoughts
for research prototypes. A recurring suggestion from authors
who have embraced these values is to consider these qualities
throughout the development of research prototypes [[13]].

Artifact evaluation processes have focused on how to create
an evaluation of artifacts for quality attributes like portability
across computing resources, reproducibility of evaluation re-
sults and reusability of research tools. Portability, reproducibil-
ity and reusability are all quality attributes, and, as with most
other quality attributes in software engineering, are achieved
with the greatest ease when they are considered at each step
of the software development lifecycle. Two questions arise:
“What does it mean to consider portability, reproducibility,
and reusability when engineering research software tools?”,
and “How can we create tools and processes to make these
qualities the de-facto norm?”. This manifesto outlines first
steps toward answering these questions and issues a call to
arms for our community to fully answer them.

IIT. INGREDIENTS FOR REPRODUCIBLE SCIENCE

a) Containers:: Containers, such as Docker contain-
ers [[14]], can package software with all its dependencies,
simplifying sharing and deployment without considerable per-
formance overhead. Containers are widely used in cloud
computing [[15]], continuous integration/delivery [14], and re-
producible research [[16]. Containers are spawned from images,
filesystem snapshots accompanied by configuration files. Im-
ages, according to a widely-used OCI specification [17]], con-

sist of layers that store changes to the underlying filesystem,
such as file additions, modifications and deletions, that are
combined in runtime using a union mount filesystem.

b) Continuous Integration:: In the past decade, continu-
ous integration (CI) has become a standard industrial practice,
allowing unit, integration, end-to-end, and even performance
tests to be automatically executed in the cloud. With CI, devel-
opers create a fully-automated “workflow” for executing some
test suite, leveraging the relatively low cost of cloud computing
resources to create a fast feedback loop. CI serves as a force-
multiplier for developers’ time, allowing developers to focus
on writing code, rather than on deploying and running large
test suites. For example, MongoDB’s CI system automates
over 200 different large-scale cloud performance tests that are
automatically run, typically once a day, detecting dozens of
regressions that are missed by a traditional microbenchmark
suite [18]. Workflow executions can be triggered when code is
pushed to a specific branch of a repository, when a pull-request
is opened on a repository, or through external or manual
triggers. When a workflow is executed, its output linked to
the revision of the code executed, ensuring traceability.

CI services are especially valuable when it is necessary to
design, implement and evaluate several prototypes to better
characterize the design space of a solution. While software
companies large and small rely on these processes, adoption
requires both cloud computing resources and technical know-
how to create workflow scripts [[19]]. Many large development
organizations have staff members dedicated to these roles.
However, as identified by surveys of research software artifact
authors and consumers [7]], researchers building software tools
do not have the skills or resources to apply CI to their devel-
opment processes. Applying this practice in a research setting
is a challenge: academia rewards scientific advancement over
engineering. Nonetheless, it is vital work that must be done.
Rizzi et al examined 26 papers extending the popular KLEE
symbolic execution engine [20] and found much duplicated
engineering work that raised questions about the soundness of
several scientific hypotheses [21].

A recent ICSE 2022 artifact demonstrated the feasibility of
this approach [22], creating a CI evaluation workflow for the
Java fuzzer, CONFETTI [23|]. The authors used this CI work-
flow to debug the upstream project, JQF [24]], and reported
the fix with an “ICSE publication quality” evaluation in a pull
request [25]]. Examining this pull request shows the immediate
benefits of the approach: the authors and contributors engaged
in a brief discussion of the performance improvement, and
each corresponding change is supported by clear empirical
evidence. Without the CI workflow, such contributions would
be far more complex and time-intensive to evaluate.

IV. VISION: A PROCESS AND ECOSYSTEM
FOR ENGINEERING REUSABLE ARTIFACTS

We are on the cusp of a revolution in software research.
Open-source ecosystems like GitHub create a tremendous
opportunity for discovering and reusing others’ code, and
artifact evaluation processes can help ensure that this code is
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Fig. 1. Workflow for building and evaluating software tools with CLASSEE: researchers read research articles, examine reusable artifacts, and formulate new
research directions. Building on those existing artifacts, scientists can automatically execute complex evaluations of those artifacts. Reproducibility is then
“baked in” to the new artifact, which can be easily shared and adopted by others to discover.

reusable. Researchers who have ideas to extend and improve
on existing research ideas should be able to extend and
improve on corresponding software artifacts. Such a process
should be frictionless, requiring no significant additional ef-
forts on the part of authors constructing these artifacts or
the reviewers evaluating them. As this community of reusable
artifacts grows, a virtuous cycle will continuously accelerate
the research process, feeding new discoveries. However, our
current artifact evaluation process incurs substantial overhead
for authors and reviewers alike: it will not be feasible to scale
this same approach to other scientific venues as-is. This is a
complex, socio-technical problem that the entire community
stands to benefit from, and which can only be addressed
through a coordinated effort.

We propose CLASSEE, a community infrastructure and ac-
companying methodology to continuously accelerate research.
Figure [I| shows how CLASSEE supports innovation in soft-
ware research by providing an infrastructure for automating
the execution of software artifacts throughout their lifecycle.
CLASSEE will leverage recent insights from the software
engineering community [22], creating automated evaluation
workflows that run within the GitHub Actions ecosystem. Our
design for CLASSEE focuses on reusability of artifact com-
ponents, leveraging advanced interfaces for containerization
like Modus [26]. This infrastructure will be applicable to any
research domain that relies on software.

CLASSEE will be a community infrastructure to support
researchers who build, evaluate, and share software tools. To
make use of CLASSEE, researchers can begin by forking an
existing project, or initializing a new project using starter
workflow files. To enable researchers to efficiently utilize their
existing compute resources, CLASSEE will provide a publicly-
available dashboard for assigning CI workflows to compute
resources, allowing researchers to efficiently use these com-
pute services without requiring any specialized training. Once
the cloud resources are connected to CLASSEE and tied to
the researcher’s GitHub repository, reproducible evaluations
can be automatically triggered. CLASSEE will implement
a caching layer to ensure continued availability of external

dependencies used in an artifact execution, without . Reviewers
auditing the reproducibility of an artifact need only specify the
computing resources to be used (e.g. resources belonging to
the author, the reviewers or a third party), and await the results.

A. Reusable Containerized Components

As described in Section many core components for
creating reusable and reproducible artifacts already exist. The
key challenge is in designing and integrating the necessary
abstractions so that the effort that goes into building one arti-
fact can be leveraged in the construction of another (perhaps
quite unrelated) artifact. In addition to providing an ecosystem
of reusable artifacts, CLASSEE will organize a collection
of reusable components, making it easier to bootstrap new
artifacts without starting from scratch.

1) Composable Containers: Modus [26] is a language for
building container images. Side effects of Modus’ scripts are
segregated into layers of OCI container images [17]], which
enables automatic caching, parallelisation and reuse. Modus’
underlying formalism, Datalog, enables concise definition of
complex parameterized builds. These properties make Modus
an excellent fit for defining experimental infrastructure, since
it facilitates efficient use of heterogeneous execution environ-
ment in a reproducible fashion.

2) Composable Actions and Workflows: GitHub Actions
provides the novel abstraction of an action, which encapsulates
a re-usable step that might be performed by many different
workflows. We will design, implement and document reusable
actions that perform tasks common to many software tool
evaluations. We will work with the community using estab-
lished human-centered design methodologies [27] to create
standardized interfaces for invoking tools on common datasets,
as well as standardized output formats for those tools to gener-
ate. These actions will make it easier for researchers building
entirely new evaluation workflows to benefit from common
implementations of core actions including: (1) Caching and
replaying all external network requests; (2) Monitoring ex-
periment execution and gathering real-time telemetry; (3) In-
voking popular software artifact datasets like BugSwarm [28]],



Defects4] [29] and Bugs.Jar [30]; (4) Generating evaluation
reports using tools like Jupyter Notebook and R-Markdown;
(5) Invoking cluster management tools to launch and teardown
cloud resources; and. We will use these actions as scaffolding
to create reusable template workflows to support evaluations
for tools that address common software engineering problems
like: (1) Regression testing; (2) Fuzzing and test generation;
and (3) Automated program repair;.

B. Core, Community Infrastructure

We also imagine that several core, key infrastructure com-
ponents will be useful for all artifacts, regardless of how they
are constructed. We envision deploying this core infrastructure
as a public, community service, also allowing research to self-
hosting it if preferred.

1) Caching and Reproducibiltiy: Software artifacts are typ-
ically distributed without the third-party dependencies that are
needed to compile and execute them. For example: while
the software artifact dataset BugSwarm containerizes each
artifact in a docker image for ease of reproducibility, many
of the artifacts do not include all external dependencies,
which require manual efforts to resolve [28]]. Hence, we have
designed a caching service for CLASSEE to improve the
performance of CLASSEE by lowering network utilization,
while simultaneously ensuring the continued availability of
those dependencies. This service will be build atop the popular,
open-source Squid proxy cache, which can be configured to
locally cache all HTTP and HTTPs traffic and to later serve all
requests from that cache [31]], [32]]. Squid supports an “offline”
mode, which, when set, will respond to queries only from its
cache. By using a self-signed root CA, Squid can even be used
to cache and intercept encrypted HTTPs traffic [32]]. We will
create a containerized Squid deployment that is pre-configured
to work with CLASSEE to archive all external dependencies
for each CI workflow execution. This tool will be directly
integrated with CI workflows through a re-usable GitHub
Action. We will archive the cache along with the artifact that
generated it; to reproduce the artifact, the proxy server will
have its cache pre-populated in “offline” mode.

2) CLASSEE CI Runner Service: GitHub Actions’ archi-
tecture is designed around a cloud service that coordinates the
execution of CI workflows on “runners” — machines that can
be scaled up or down, each of which runs an entirely self-
contained build task. Although the service places a limit on
the number of minutes of cloud runners (provided by GitHub)
that each project can use for free, developers can deploy “self-
hosted runners’ on their existing compute resources and use
the platform for free. CLASSEE will provide a seamless bridge
between GitHub Actions and cloud computing resources that
are available to researchers (including specialized hardware
like GPUs), entirely automating the provisioning of CI runners
to low or no-cost resources.

3) Documentation and Training: We are sure that many
researchers will want to create different evaluation workflows,
or to integrate tools that we could not have imagined — a
significant aspect of CLASSEE will include the development,

evaluation and dissemination of training materials to help
researchers adapt and re-use the CI components that we will
develop as part of this project. Working in collaboration with
community stakeholders, we will create, document and share
reusable CI workflows to automate the execution of common
large-scale software tool evaluations.

V. FUTURE PLANS

We have seen developments begin in the community that
support our vision, such as the CONFETTI GitHub Actions
artifact [22]] and Modus Prolog dialect for specifying docker
images [26]]. However, these pieces must still be brought
together into a core piece of reusable infrastructure. Our imme-
diate plans are to develop CLASSEE’s core community infras-
tructure described in Section[[Vl We will create documentation
and training materials to facilitate on-boarding to CLASSEE,
and provide a publicly-hosted installation of CLASSEE free of
charge. We plan to work with the program repair, regression
testing, and fuzzing communities to build template workflows
for conducting reusable, large-scale evaluations of these tools.

Building off of the ACM SIGSOFT Empirical Research
Standards [33|], we plan to engage closely with the software
engineering community to create and share best practices for
conducting large-scale software evaluations. We expect that
some aspects of these best practice discussions will be broadly
applicable, for example: determining how to sample a subset
of an evaluation for a smoke test, how to avoid over-fitting a
tool to an evaluation dataset, how to ensure reproducibility and
how to mitigate the effects of non-determinism. Other aspects,
such as the interfaces used to invoke a tool by a workflow or
to process its output and visualize key performance indicators,
might be specialized to communities, but we nonetheless
expect that the processes that we follow to identify and refine
these norms will be useful for others.

VI. CONCLUSION

Scientific research faces a software crisis of its own: we
build software for experimentation and to validate hypothe-
ses, but creating reusable and reproducible software is a
tremendous burden. However, there is so much benefit to a
world in which research articles are accompanied by software
artifacts that are truly reusable in the sense that another
researcher could modify and re-execute them. It is the duty
of the software engineering community to rise to meet these
challenges — to improve our own software artifacts, and to
transfer these insights to the greater scientific community. A
decade’s worth of artifact evaluation processes have shown
that while it is possible to create reusable artifacts, authors
benefit most from a process that instills reusability and repro-
ducibility from the inception of a project to its publication. A
community infrastructure that brings continuous integration to
research software will serve as a first step towards creating an
ecosystem of truly reusable artifacts.
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