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Abstract—Science is facing a software reproducibility crisis.
Software powers experimentation, and fuels insights, yielding new
scientific contributions. Yet, the research software is often difficult
for other researchers to reproducibly run. Beyond reproduction,
research software that is truly reusable will speed science by
allowing other researchers to easily build upon and extend prior
work. As software engineering researchers, we believe that it is
our duty to create tools and processes that instill reproducibility,
reusability, and extensibility into research software. This paper
outlines a vision for a community infrastructure that will bring
the benefits of continuous integration to scientists developing
research software. To persuade researchers to adopt this infras-
tructure, we will appeal to their self-interest by making it easier
for them to develop and evaluate research prototypes. Building
better research software is a complex socio-technical problem
that requires stakeholders to join forces to solve this problem for
the software engineering community, and the greater scientific
community. This vision paper outlines an agenda for realizing
a world where the reproducibility and reusability barriers in
research software are lifted, continuously accelerating research.

Index Terms—reproducibility, artifact evaluation, continuous
integration, scientific software, containers

I. INTRODUCTION

Reproduction is the cornerstone of science. We use it to
ensure that findings generalize. Unfortunately, science suffers
from a reproducibility crisis. In 2005, Professor Ioannidis of
Stanford’s School of Medicine provocatively proclaimed that
most published research findings are false [1]. The crisis is
ongoing. In a 2016 survey by Nature found that more than 70%
of researchers failed to reproduce published results [2] and the
website Retraction Watch [3] recorded over 1433 retractions
in 2019 [4].

A finding is replicable when the experiment that produced
it is meticulously described in enough detail that other re-
searchers can, from its description alone, conduct the ex-
periment and obtain the finding. Experiments — throughout
science — increasingly rely on software: for simulation,
analyzing data, and conducting experiments. In theses cases,
authors should share an artifact along with their findings,
so that the results can be reproduced by running the same
software. However: due to the complexity of user interfaces,
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the abundance of software defects, junior researchers learning
on the job, dependencies on evolving libraries, and the wide
variety of execution environments, software is often not repro-
ducible. Thus, software reproducibility is a key dimension of
the replication crisis that affects science.

Lack of software reproducibility introduces a key problem
beyond the traditional problem of unvalidated results: waste.
To reuse an artifact, researchers are required to spend their
valuable time and energy on repetitive, manual tasks rather
than focusing on discovery and innovation. Instead of “stand-
ing on the shoulders of giants,” researchers are required to
implement those same efforts over and over again. Over time,
these wasted efforts inhibit the pace of research and make it
harder for newcomers to enter the field.

Clearly, action is needed. We must accelerate science gen-
erally to address societal problems, like climate change and
healthcare, for which technical solutions may exist. However,
because of software’s uptake in science, software reproducibil-
ity is an increasingly important component of reproducibility
writ large and it is inherently a software engineering problem.
It orbits core software engineering concerns: software pro-
cess, documentation, future-proofing, maintainability, efficient
execution, and portability. Software engineers are, therefore,
best placed to tackle it; indeed, given the stakes, it is our
community’s duty to rise this challenge and act to make
software more reproducible.

Low reusability and reproducibility of software artifacts
greatly reduces the pace of scientific research. To continu-
ously accelerate research, we must build infrastructure and
implement processes that instill reusability and reproducibility
in software artifacts. Engineering reusable software artifacts
is not enough. We also must simultaneously incentivize re-
searchers not only to use this infrastructure, but to contribute
to its design, development, and deployment.

There have been many efforts to improve the software
reproduction crisis within the field of software engineering,
such as artifact evaluation. However, these efforts have also
exposed new challenges: even artifacts that aim to ensure
perpetual reproducibility are subject to decay, and researchers
struggle to effectively reuse them. Meanwhile, continuous
integration (CI) has been widely adopted in industry, allowing



teams to “shift left” on testing by running large test suites far
more regularly. Despite its potential to improve reproducibility,
CI is not widely adopted in the research community. We
propose a research agenda that synergistically improves the
software process to tackle the software reproducibility crisis
and outline open problems.

II. REPRODUCIBILITY IN RESEARCH SOFTWARE

Neither the reproducibility crisis nor science’s increasing
reliance on software are new. In response to that, the scientific
community formulated four principles, findability, accessi-
bility, interoperability, and reusability, collectively known as
FAIR [5], that are applicable to both research data, and also to
the algorithms, tools, and workflows that are required to obtain
that data. In software engineering, the community introduced
artifact evaluation (first at ESEC/FSE in 2011 [6]) to tackle
the lack of software reproducibility.

Artifact evaluation is a process to assess the reusability
of tools and the reproducibility of experiments that support
research articles. This process is now a commonplace process
at most software engineering conferences. It has evolved
significantly over the past decade, and has also been adopted
by many other communities. However, there remain signifi-
cant challenges: recent surveys have shown that authors and
reviewers have differing expectations for artifact construction
and evaluation [7], [8]. Moreover, a retrospective analysis of
artifacts published in the SE community over the past ten years
has not shown that artifacts which are evaluated are reused
more frequently than those that are not evaluated [9].

Ideally, reusable artifacts should lower the barriers to en-
try for newcomers to a field. Imagine if a researcher who
specializes in genetic algorithms might want to design a new
program repair tool. Rather than implement an entire program
repair tool and evaluation script themselves, they should be
able to reuse existing artifacts. Software artifacts might be
found by reference in research articles, or in repositories that
collect artifacts [10], [11]. However, simply finding a relevant
artifact is not sufficient to effectively reuse it, since researchers
need to be able to execute them at scale. Even in the case
of program repair, where a very well-documented evaluation
artifact exists [12], it does not provide the infrastructure to
actually execute the artifact using cloud resources. In fact,
it is distributed with the following disclaimer: “Warning: the
experiment took 313 days of combined execution time.” While
it is certainly possible to parallelize this evaluation using con-
tainerization and cloud computing resources, operationalizing
artifacts like these requires specialized distributed systems
knowledge that can prevent newcomers from contributing.

At the dawn of artifact evaluation, there was much discus-
sion over what incentives would be necessary to encourage au-
thors to create and share their artifacts. Since then, surveys of
authors [8], [13] and post-hoc analyses of bibliometric data [9],
[13] have shown that incentives may not be well-aligned. Part
of the challenge in building reusable artifacts is that the goals
of “reusability” and “repeatability” are often after-thoughts
for research prototypes. A recurring suggestion from authors

who have embraced these values is to consider these qualities
throughout the development of research prototypes [14].

Artifact evaluation processes have focused on how to create
an evaluation of artifacts for quality attributes like portability
across computing resources, reproducibility of evaluation re-
sults and reusability of research tools. Portability, reproducibil-
ity and reusability are all quality attributes, and, as with most
other quality attributes in software engineering, are achieved
with the greatest ease when they are considered at each step
of the software development lifecycle. Two questions arise:
“What does it mean to consider portability, reproducibility,
and reusability when engineering research software tools?”,
and “How can we create tools and processes to make these
qualities the de-facto norm?”. This manifesto outlines first
steps toward answering these questions and issues a call to
arms for our community to fully answer them.

III. INGREDIENTS FOR REPRODUCIBLE SCIENCE

Containers, such as Docker containers [15], can package
software with all its dependencies, simplifying sharing and
deployment without considerable performance overhead. Con-
tainers are widely used in cloud computing [16], continu-
ous integration/delivery [15], and reproducible research [17].
Containers are spawned from images, filesystem snapshots
accompanied by configuration files.

Continuous integration (CI) has become a standard indus-
trial practice, allowing unit, integration, end-to-end, and even
performance tests to be automatically executed in the cloud.
With CI, developers create a fully-automated “workflow” for
executing some test suite, leveraging the relatively low cost of
cloud computing resources to create a fast feedback loop. For
example, MongoDB’s CI system automates over 200 different
large-scale cloud performance tests that are automatically run,
typically once a day, detecting dozens of regressions that are
missed by a traditional microbenchmark suite [18].

CI services are especially valuable when it is necessary to
design, implement and evaluate several prototypes to better
characterize the design space of a solution. While software
companies rely on these processes, adoption requires both
cloud computing resources and technical know-how to create
workflow scripts [19]. Many large development organizations
have staff members dedicated to these roles. However, surveys
of research software artifact authors and consumers [8] show
that researchers building software tools do not have the skills
or resources to apply CI to their development processes.

Applying this practice in a research setting is a challenge:
academia rewards scientific advancement over engineering.
Nonetheless, it is vital work that must be done. Rizzi et al
examined 26 papers extending the popular KLEE symbolic
execution engine [20] and found much duplicated engineering
work that raised questions about the soundness of several
scientific hypotheses [21].

Our recent ICSE 2022 artifact demonstrated the feasibility
of this approach [22], creating a CI evaluation workflow for
the Java fuzzer, CONFETTI [23]. We used this CI workflow to
debug the upstream project, JQF [24], and reported the fix with



an “ICSE publication quality” evaluation in a pull request [25].
Examining this pull request shows the immediate benefits
of the approach: we engaged with the project maintainers
in a brief discussion of the performance improvement, and
each corresponding change is supported by clear empirical
evidence. Without the CI workflow, such contributions would
be far more complex and time-intensive to evaluate. This
CI-enabled contribution is commonplace in the development
and maintenance of software in industry, but is shockingly
uncommon in academia.

IV. VISION: A PROCESS AND ECOSYSTEM
FOR ENGINEERING REUSABLE ARTIFACTS

We are on the cusp of a revolution in research software
and, therefore, software research. Open-source ecosystems like
GitHub create a tremendous opportunity for discovering and
reusing others’ code, and artifact evaluation processes can help
ensure that this code is reusable. Indeed, scientists, across
many fields, are adopting GitHub. Universities throughout
the world are investing heavily in establishing and staffing
research development teams to facilitate this transformation1.

Researchers who have ideas that build on existing research
ideas should be able to extend and improve on corresponding
software artifacts. Such a process should be frictionless. As
this community of reusable artifacts grows, a virtuous cycle
will continuously accelerate the research process. However,
our current artifact evaluation process incurs substantial over-
head for authors and reviewers alike: it will not be feasible
to scale this same approach to other scientific venues as-is.
This is a complex, socio-technical problem that the entire
community stands to benefit from, and which can only be
addressed through a coordinated effort.

We propose CLASSEE, a community infrastructure and
accompanying methodology to continuously accelerate re-
search through Continuous LArge Scale Software Engineering
Experimentation. Figure 1 shows how CLASSEE supports
innovation in software research by providing an infrastructure
for automating the execution of software artifacts throughout
their lifecycle. CLASSEE will leverage the process of con-
tinuous integration, creating automated evaluation workflows
that run within the GitHub Actions ecosystem. Our design
for CLASSEE focuses on reusability of artifacts, leveraging
advanced interfaces for containerization like Modus [26]. This
infrastructure will be applicable to any research domain that
relies on software.

To enable researchers to efficiently utilize their existing
compute resources, CLASSEE will provide a publicly-available
dashboard for assigning CI workflows to compute resources,
allowing researchers to efficiently use these compute services
without requiring any specialized training. Once the cloud

1Examining the first 50 hits from a Google search for “research software
development teams in universities” at the time of this writing reveals that ca
90% of these hits concern just such initiatives, of which https://www.ucl.ac.
uk/advanced-research-computing/expertise/research-software-development at
University College London is a representative example.

resources are connected to CLASSEE and tied to the re-
searcher’s GitHub repository, reproducible evaluations can be
automatically triggered. CLASSEE will implement a caching
layer to ensure continued availability of external dependen-
cies used in an artifact execution, without requiring manual
effort to identify and archive them. Reviewers auditing the
reproducibility of an artifact need only specify the computing
resources to be used (e.g. resources belonging to the author,
the reviewers or a third party), and await the results.

A. Orchestrating Reuse with Modus

To orchestrate the reproduction of artifacts with CLASSEE,
we will use a recently proposed language for building con-
tainer images, Modus [26]. Modus uses logic programming to
express interactions among build parameters, specify complex
build workflows, automatically parallelize and cache builds,
help to reduce image size, and simplify maintenance. In
contrast, Dockerfiles, the current dominant solution, force
developers to create complex, ad-hoc frameworks, such as the
templating approach used in the official Python images [27]
just to be able to reuse dependency installation code across
several images, which undermines reusability.

Modus expresses build instructions in the form of Data-
log rules. Despite the difference in research domains, many
common software-focused workflows arise. One example is
creating multiple variants of a simulator, of a chemical or
physical process, to optimize modeling fidelity. Figure 2 shows
another example, drawn from our own research. Here we use
Modus to execute program repair experiments. In this example,
a program repair tool is executed on the given version of a
project to generate a patch in the predicate patch. This patch
is then applied to a fresh version of the project and is tested in
the predicate test. The used predicates such as checkout
and install_tool can be either defined by the user or
provided by the developers of tools, which helps on-boarding.

The key advantage of the definitions presented in this
example is their modularity — the predicates abstract away
irrelevant information such as tool installation instructions and
temporary directories, and can be transparently reused in other
experimental scripts. Apart from that, the side effect of each
predicate is stored into a separate image layer, which enables
automatic caching and parallelization. This is important for
research experiments, since executing experiments takes a
significant amount of time and computing resources.

Reproducibility is not free, it requires continuous main-
tenance; it is, in fact, prohibitive for a single researcher.
Distributing this work amortizes the cost, but undermines
reproducibility, as discrepancies and divergences in the arti-
facts arise. To address this problem, we will design a flexible
module import system, which, combined with Modus’ mod-
ularity, will enable users to share and reuse their artifacts,
build scripts and experimental workflows in a transparent and
convenient way. The import system will make our infrastruc-
ture decentralized: individual components will be maintained
by independent groups of researchers, while still preserving
integrity and reproducibility of the infrastructure as a whole.

https://www.ucl.ac.uk/advanced-research-computing/expertise/research-software-development
https://www.ucl.ac.uk/advanced-research-computing/expertise/research-software-development


Discovery Experimentation

Read 
research 
articles

Dissemination

Publish research paper 
with reproducible results

Publish reusable 
software artifact

Select an artifact Build 
Prototype

Push progress to GitHub

Study results, form new hypotheses

Automatic 
evaluation

Examine reusable artifacts

Formulate 
research direction

Fig. 1. Workflow for building and evaluating software tools with CLASSEE: researchers read research articles, examine reusable artifacts, and formulate new
research directions. Building on those existing artifacts, scientists can automatically execute complex evaluations of those artifacts. Reproducibility is then
“baked in” to the new artifact, which can be easily shared and adopted by others to discover.

base(project, version, "/experiment") :-
from("ubuntu:20.04"),
install_project_dependencies(project),
checkout(project, version, "/experiment").

patch(project, version, tool, patch_file) :-
base(project, version, directory),
install_tool(tool),
tool_config(tool, project, config),
run_tool(tool, config, directory, patch_file).

validate_patch(project, version, tool) :-
base(project, version, dir),
patch(project, version, tool, patch_file)
::copy(patch_file, patch_file),

run(f"cd ${dir} && patch -p0 -s < ${patch_file}"),
test_project(project, version, dir).

Fig. 2. Modusfile defining program repair experiments with GenProg using
reusable images and layer-building functions.

The decentralized architecture will promote a wider partici-
pation in research community, and will reduce the burden of
researchers who currently have to maintain custom variants of
a large number of third-party tools and benchmarks to make
their research reproducible.

GitHub Actions’ eponymous action command encapsulates
a re-usable step that might be performed by many differ-
ent workflows. To exploit this functionality, we will design,
implement and document reusable actions based on Modus
predicates that perform tasks common to many software tool
evaluations. We will work with the community using estab-
lished human-centered design methodologies [28] to create
standardized interfaces for invoking tools on common datasets,
as well as standardized output formats for those tools to gener-
ate. These actions will make it easier for researchers building
entirely new evaluation workflows to benefit from common
implementations of core actions including: (1) Caching and
replaying all external network requests; (2) Monitoring ex-
periment execution and gathering real-time telemetry; (3) In-
voking popular software artifact datasets like BugSwarm [29],
Defects4J [30] and Bugs.Jar [31]; (4) Generating evaluation

reports using tools like Jupyter Notebook and R-Markdown;
(5) Invoking cluster management tools to launch and teardown
cloud resources.

B. Core, Community Infrastructure

We also imagine that several core, key infrastructure com-
ponents will be useful for all artifacts, regardless of how they
are constructed. We envision deploying this core infrastructure
as a public, community service, also allowing research to self-
hosting it if preferred.

1) Caching and Reproducibility: Software artifacts are typ-
ically distributed without the third-party dependencies that are
needed to compile and execute them. For example: while
the software artifact dataset BugSwarm containerizes each
artifact in a docker image for ease of reproducibility, many
of the artifacts do not include all external dependencies,
which require manual efforts to resolve [29]. Hence, we have
designed a caching service for CLASSEE to improve the
performance of CLASSEE by lowering network utilization,
while simultaneously ensuring the continued availability of
those dependencies. This service will be build atop the popular,
open-source Squid proxy cache, which can be configured to
locally cache all HTTP and HTTPs traffic and to later serve all
requests from that cache [32], [33]. Squid supports an “offline”
mode, which, when set, will respond to queries only from its
cache. By using a self-signed root CA, Squid can even be used
to cache and intercept encrypted HTTPs traffic [33]. We will
create a containerized Squid deployment that is pre-configured
to work with CLASSEE to archive all external dependencies
for each CI workflow execution. This tool will be directly
integrated with CI workflows through a re-usable GitHub
Action. We will archive the cache along with the artifact that
generated it; to reproduce the artifact, the proxy server will
have its cache pre-populated in “offline” mode.

2) CLASSEE CI Runner Service: GitHub Actions’ archi-
tecture is designed around a cloud service that coordinates the
execution of CI workflows on “runners” — machines that can
be scaled up or down, each of which runs an entirely self-
contained build task. Although the service places a limit on



the number of minutes of cloud runners (provided by GitHub)
that each project can use for free, developers can deploy “self-
hosted runners’ on their existing compute resources and use
the platform for free. CLASSEE will provide a seamless bridge
between GitHub Actions and cloud computing resources that
are available to researchers (including specialized hardware
like GPUs), entirely automating the provisioning of CI runners
to low or no-cost resources.

3) Documentation and Training: We are sure that many
researchers will want to create different evaluation workflows,
or to integrate tools that we could not have imagined — a
significant aspect of CLASSEE will include the development,
evaluation and dissemination of training materials to help
researchers adapt and re-use the CI components that we will
develop as part of this project. Working in collaboration with
community stakeholders, we will create, document and share
reusable CI workflows to automate the execution of common
large-scale software tool evaluations.

V. FUTURE PLANS

Our future plans build on our prior work, including the
CONFETTI GitHub Actions artifact [22] and Modus [26].
However, these pieces must still be brought together. Our
immediate plans are to develop CLASSEE’s core community
infrastructure described in Section IV. We will create doc-
umentation and training materials to facilitate on-boarding
to CLASSEE, and provide a publicly-hosted installation of
CLASSEE free of charge. We plan to work with the program
repair, regression testing, and fuzzing communities to build
template workflows for conducting reusable, large-scale eval-
uations of these tools.

Building off of the ACM SIGSOFT Empirical Research
Standards [34], we plan to engage closely with the software
engineering community to create and share best practices for
conducting large-scale software evaluations. We expect that
some aspects of these best practice discussions will be broadly
applicable, for example: determining how to sample a subset
of an evaluation for a smoke test, how to avoid over-fitting
a tool to an evaluation dataset, how to ensure reproducibility
and how to mitigate the effects of non-determinism.

Our framework will provide a foundation for other tool-
ing aimed at improving research, like Planalyzer [35], Soy-
lent [36], and large language models like chatGPT2.

Ensuring success of such a large-scale project will require
continuous evaluation. Thankfully, some of the evaluation
processes can be entirely automated, perhaps even using
CLASSEE itself. For example: we plan to create CI workflows
that deploy a testing instance of CLASSEE, and then execute
common workflow templates, effectively using the platform
to test itself. We will collect various quantitative metrics
from those workflow executions including the time spent, the
reproducibility of the result, and the overall performance of
the platform including error rates and throughput. We imagine
that we would regularly run only a subset of the workflows,

2chatGPT website: https://openai.com/blog/chatgpt/

but will also plan to evaluate these metrics for all of the
workflow templates and artifacts at least quarterly, so as to
detect otherwise un-noticeable regressions. To evaluate the
utility and usability of the tool, we plan to use surveys,
interviews and observational studies to identify opportunities
to improve uptake and facilitate sustained adoption.

We plan to evaluate our training and curricular materials
by applying them in our own classes, sharing them with
the community, and using robust education research methods
[37] to inform the iterative improvement of these materials.
We will recruit students to work on semester-long projects,
developing and using CLASSEE. While providing a valuable
training opportunity for the students to learn about cutting-
edge software engineering technology, these students will
provide direct and useful feedback to improve our materials.
We plan to make all of these materials available at the project
website, https://www.classee.cloud/.

VI. CONCLUSION

Scientific research faces a software crisis of its own: we
build software for experimentation and to validate hypotheses,
but creating reusable and reproducible software is a tremen-
dous burden. However, there is so much benefit to a world in
which research articles are accompanied by software artifacts
that are truly reusable in the sense that another researcher
could modify and re-execute them. A decade’s worth of artifact
evaluation processes have shown that while it is possible to
create reusable artifacts, authors benefit most from a process
that instills reusability and reproducibility from the inception
of a project to its publication. A community infrastructure that
brings continuous integration to research software will serve
as a first step towards creating an ecosystem of truly reusable
artifacts.
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