Crossover in Parametric Fuzzing

Katherine Hough
Northeastern University
Boston, Massachusetts, United States
hough.k@northeastern.edu

ABSTRACT

Parametric fuzzing combines evolutionary and generator-based
fuzzing to create structured test inputs that exercise unique execu-
tion behaviors. Parametric fuzzers internally represent inputs as bit
strings referred to as “parameter sequences”. Interesting parameter
sequences are saved by the fuzzer and perturbed to create new in-
puts without the need for type-specific operators. However, existing
work on parametric fuzzing only uses mutation operators, which
modify a single input; it does not incorporate crossover, an evolu-
tionary operator that blends multiple inputs together. Crossover
operators aim to combine advantageous traits from multiple inputs.
However, the nature of parametric fuzzing limits the effectiveness
of traditional crossover operators. In this paper, we propose linked
crossover, an approach for using dynamic execution information to
identify and exchange analogous portions of parameter sequences.
We created an implementation of linked crossover for Java and
evaluated linked crossover’s ability to preserve advantageous traits.
We also evaluated linked crossover’s impact on fuzzer performance
on seven real-world Java projects and found that linked crossover
consistently performed as well as or better than three state-of-the-
art parametric fuzzers and two other forms of crossover on both
long and short fuzzing campaigns.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

KEYWORDS

fuzz testing, test input generation, generator-based fuzzing, para-
metric fuzzing, dynamic analysis

ACM Reference Format:

Katherine Hough and Jonathan Bell. 2024. Crossover in Parametric Fuzzing,.
In 2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE °24), April 14-20, 2024, Lisbon, Portugal. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3597503.3639160

1 INTRODUCTION

Early identification of software defects is crucial for mitigating
their impact and reducing the cost of repairing them. Evolutionary
fuzzing is a prominent technique for automatically generating test
inputs that leverages information about system executions to bias

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3639160

Jonathan Bell

Northeastern University
Boston, Massachusetts, United States
j.bell@northeastern.edu

the exploration of an input space towards promising areas in order
to maximize the diversity of explored execution behaviors. Over the
course of a fuzzing campaign, inputs are “evolved” by maintaining
a population of interesting inputs that have been discovered and
creating new inputs by perturbing these interesting inputs. This
evolutionary search process depends on the assumption that an
input created by making a small change to an interesting input
is more likely to reveal new execution behaviors than a purely
random input. Evolutionary fuzzing has been shown to be effective
at finding defects in real world systems [18, 25, 35, 43, 46, 47].

However, if the system under test has a highly constrained input
structure, then even small changes to an input are likely to violate
those constraints. Thus, an evolutionary fuzzer that is unaware of
the system’s input structure may struggle to create valid inputs
that exercise the core functionality of the system. Padhye et al.
[46] proposed and demonstrated the effectiveness of parametric
fuzzing, a technique for performing structure-aware, evolutionary
fuzzing. Parametric fuzzers use QUICKCHECK [10]-style generators
to achieve structural awareness. In parametric fuzzing, generators
are used to map fuzzer-created bit strings, referred to as “parameter
sequences”, to structures [23, 38, 46, 49]. The parametric fuzzer
provides a means of splitting the parameter sequence into arbitrary,
primitive-typed values. These arbitrary values are then used by one
or more generators to build structured test inputs that conform to
user-defined constraints.

The strength of parametric fuzzing is that it supports generators
of arbitrary types without requiring developers to define type-
specific mutation operators (operators that modify a single input)
and crossover operators (operators that combine parts from multi-
ple inputs together) to perturb inputs. Since a parameter sequence
is a bit string, parametric fuzzers are able to modify parameter se-
quences using generic mutation and crossover operators. However,
existing parametric fuzzers do not support crossover and use only
mutation operators to modify parameter sequences [23, 38, 46, 49].

Prior work has demonstrated the effectiveness of crossover in
structured fuzzing [8, 18, 47]. Furthermore, many unstructured
fuzzers, such as AFL [35], AFL++ [16], and LIBFUZZER [25], utilize
some form of general-purpose crossover operator. Some fuzzers,
like AFL++ [16] and LIBFUZZER [25], even support custom, user-
defined crossover operators. The efficacy of crossover operators
stems from their ability to produce children that inherit advanta-
geous traits from multiple parent inputs — a property referred to
as heritability [48, 51].

Unfortunately, parametric fuzzing lacks an explicit tree structure
rendering tree-based crossovers operators like the ones proposed
by Pham et al. [47], Holler et al. [18], and Aschermann et al. [8]
inapplicable. Furthermore, the nature of parametric fuzzing limits
the effectiveness of unstructured crossover operators like the ones
found in AFL and riBFuzzeRr. Our key insight is that a tree structure

https://doi.org/10.1145/3597503.3639160
https://doi.org/10.1145/3597503.3639160

ICSE °24, April 14-20, 2024, Lisbon, Portugal

can be extracted from the hierarchy of method calls made by gener-
ators in parametric fuzzing. Using this insight, we designed a new
crossover operator for parametric fuzzing — “linked crossover”. Em-
pirically comparing our approach to traditional crossover operators,
we found that linked crossover produces new inputs that inherit
more desirable traits from their parents. In a comparison against
three state-of-the-art parametric fuzzers, we found that applying
linked crossover increased branch coverage and defect detection
rates. Overall, this work makes the following contributions:

o A description of linked crossover, a novel crossover operator
for parametric fuzzing that leverages call tree information
to intelligently combine inputs.

e A open source implementation of linked crossover for Java.

e An empirical comparison of the heritability and effectiveness
of different crossover operators in parametric fuzzing.

e An evaluation of the effectiveness of linked crossover on
seven Java projects against three state-of-the-art parametric
fuzzers: ZEsT [46], BED1vFuzz [38], and RLCHECK [49].

2 BACKGROUND
2.1 Evolutionary Fuzzing

Algorithm 1 depicts a generic, evolutionary fuzzing algorithm that
is similar to the ones used by AFL [35] and riBFuzzER [25] The
evolutionary fuzzer maintains a population of interesting inputs.
The fuzzer repeatedly creates and executes new inputs. These in-
puts are created by selecting a parent input from the population
and perturbing that input by applying a number of mutation and
crossover operators to produce a child. This child is then executed
as an input to the fuzzing target and, the fuzzer observes execution
feedback. The type of execution feedback depends on the fuzzer;
branch coverage is a common choice [25, 35, 46]. If the child exer-
cises new coverage, it is saved to a corpus of coverage-revealing

Algorithm 1 A generic, evolutionary fuzzer.

1: failures «— {}

2: totalCoverage «— {}

3: population «— {}

4: while there is time remaining in the campaign do
5: if population is empty then

6: child < a new random input

7 else

8: parent « select(population)

9: child « modify(parent, population)

10: end if

11: coverage, feedback, failure « execute(child)
12: if 3x € coverage : x ¢ totalCoverage then

13: save child to the corpus

14: totalCoverage «— totalCoverage U coverage
15: end if

16: if failure # O A failure ¢ failures then

17: save child to the failures directory

18: failures «— failures U {failure}

19: end if

20: population < update(population, feedback, child)
21: end while

Katherine Hough and Jonathan Bell

inputs. If the child induced a new failure, it is saved to a directory
of failure-inducing inputs. Lastly, the population may be updated,
typically to include this new child input if the child revealed new
system behavior.

2.2 Crossover

Crossover (sometimes also referred to as recombination or splic-
ing) is an evolutionary operator that produces new child inputs
by combining multiple parent inputs with the goal of passing on
desirable traits from the parents to the children [36]. Typically,
crossover operators exchange segments from two parents between
anumber of “crossover points”. For example, the crossover operator
used by AFL and AFL++ is a one-point crossover — it combines
two inputs by splicing them together at a randomly selected mid-
point [16, 35]. Evolutionary search approaches commonly use one-
or two-point crossover since performance may degrade as the num-
ber of crossover points increases [14, 15]. A crossover operator is
most effective when it is able to recombine high-fitness, interesting
subcomponents from separate parents into a single child [17, 36, 55].

2.3 Parametric Fuzzing

When a system under test has a highly constrained input struc-
ture, small modifications to an input are likely to produce invalid
inputs preventing the fuzzer from exercising the core functional-
ity of the system. Parametric fuzzing overcomes this limitation by
using QUICKCHECK-style generators to achieve structural aware-
ness [23, 38, 46]. The parametric fuzzer provides a means of split-
ting parts of fuzzer-created bit strings, known as “parameter se-
quences”, into arbitrary, primitive-typed values. QuickCHECK-style
generators create complex input structures using these arbitrary
values, thereby creating a “parametric generator” that maps param-
eter sequences to generated structures. For example, consider the
generate method in Listing 1.

The method nextByte is provided by the parametric fuzzer; it
consumes and returns the next byte of the parameter sequence.
The generate method recursively creates an XML element. The
call to nextByte on line 2 selects a tag name for the XML element.
The value returned by the call to nextByte on line 4 determines
whether the element should have child elements or text content. If
the element has children, the call to nextByte on line 5 determines
the number of children. Otherwise, the call to nextByte on line 9
selects the text content of the element.

When the parameter sequence in Figure la is applied to the
generator in Listing 1, the generator produces the string "<a>x
<c></c>". The parameter at index 0 is used to construct
the root element’s tag name, 'a'. Next, the parameter at index 1
determines that the root element should have child elements, and
the parameter at index 2 determines that there should be 2 children.
The parameter at index 3 determines the first child’s tag name, 'b'.
The parameter at index 4 determines that the first child should have
text content, and the parameter at index 5 determines that the text
content should be 'x'. The parameter at index 6 determines the
second child’s tag name, 'c¢'. The parameter at index 7 determines
that the second child should have children. Finally, the parameter
at index 8 determines that the second child should have 0 children.

Crossover in Parametric Fuzzing

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

<a>

1 public String generate() { 97 1 > 98 o |120 99 1 0 xj/b>
. <c></c>
0 char n = (char) nextByte(): e o
3 String c = ""; (a) Parent A. The solid line marks the crossover point. The dotted line encloses the prefix
4 if (nextByte() > @) { contributed to the child produced from the crossover operation.
5 int x = nextByte() % 5; <d>
. X X N EE <e>
6 for (int i = 0; 1 < x; i++) { 10 1 |1 el L 9% |76 102 0 121! ——— <Py</f>
- N e T ! </e>
7 c += generate(); </d>
8 3 (b) Parent B. The solid line marks the crossover point. The dashed line encloses the suffix
9)} else {c += (char) nextByte();} contributed to the child produced from the crossover operation.
10 return "<" + n + ">" + c + <a>
" " . e L T T Z
11 /T oA o+ Ty 98 0 19 76 102 @ 121! — T 0
123 s LSS e

Listing 1: A simple XML document generator.

(c) Child produced by performing one-point crossover on Parents A and B. The dotted
and dashed lines enclose the portions of the child’s parameter sequence that were transferred

from Parents A and B, respectively.

Figure 1: A generator (left) and associated inputs (right). For each input, we depict the bytes of the parameter sequence (left of the
arrow) and the XML structure (right of the arrow) generated when the input is applied to the generator. Each parameter is colored based on
how it used by the generator. Parameters used to construct a value returned by the call to nextByte on lines 2, 4, 5, and 9 are colored green,
yellow, blue, and red, respectively. Unused parameters are colored gray. Whitespace has been added to the XML structures for readability.

Following a similar process, the generator produces the string "<d><
e><f>y</f></e></d>" from the parameter sequence in Figure 1b.

Notice that the effect of each parameter depends upon how it
is used by the generator. For example, the parameter at index 5 of
Figure 1a is used by the generator to create the text content 'x' for
the first child of the root element. Whereas, the parameter at index
5 of Figure 1b is used by the generator to determine that the first
child of the root element should have 1 child.

Since a parameter sequence is a bit string, it can be perturbed us-
ing generic mutation and crossover operators to create a new child
sequence. Regardless of how these operators change the parent, the
structure generated from the child sequence will still conform to
any constraints imposed by the generator. For instance, the genera-
tor in Listing 1 will always create opening and closing tags. This
allows the parametric fuzzer to produce valid inputs of various
types without the need for type-specific operators. However, since
the effect of a parameter value depends on the context in which it
is used, unmodified parameters in the child sequence may be inter-
preted differently than they were for the parent sequence. This can
limit the effectiveness of traditional crossover operators because
naively chosen crossover points are likely to cause the parameters
from one parent to be placed into a position in the other parent
that corresponds to an entirely different context.

Consider a one-point crossover of the inputs in Figures 1a and 1b
that produces the child parameter sequence displayed Figure 1c.
This child parameter sequence generates the string "<a>Z<L></L>" when applied to the generator in Listing 1. Even
though the child parameter sequence was constructed from part of
the sequence in Figure 1b, the structure generated from the child
does not resemble the structure generated for Figure 1b, because the
portion of the sequence in Figure 1b that was transferred to the child
was interpreted in a different context. For example, the parameter
at index 5 of input sequence in Figure 1b, 76, was originally used
by the call to nextByte on line 4. In this context, the value 76
meant that the element should have children. However, in the child

parameter sequence, the parameter value 76 was used by the call
to nextByte on line 2. In this context, the value 76 meant that the
element should have the tag name 'L' (ASCII character 76).
These context changes limit the number of crossover points that
produce children that inherit advantageous traits from both par-
ents — negatively impacting the heritability of traditional crossover
operators. This effect is even more pronounced as the length of
parameter sequences and the complexity of generators increase.

3 APPROACH

Our approach to crossover in parametric fuzzing, linked crossover,
leverages information about the dynamic execution behavior of
parametric generators to intelligently select crossover points. Linked
crossover aims to identify and exchange portions of parameter se-
quences that are interpreted similarly by the parametric generator.
These subsequences are identified using “parametric call trees”.
A parametric call tree records caller-callee relationships between
method calls and the portion of the parameter sequence that was
used by each method call. Linked crossover is a variant of two-point
crossover — two crossover points are chosen for each parent and
the values between those points are swapped between the parents.
Unlike traditional two-point crossover, which chooses crossover
points at random [15], linked crossover computes crossover points
based on the parametric call trees of the parent inputs. This links
the choice of crossover points to the parametric generator’s execu-
tion behavior, thereby preserving logical boundaries in the input
and increasing the chance that the crossover produces a child that
inherits traits from both parents.

3.1 Parametric Call Tree

The parametric call tree for a parameter sequence represents the
execution of the generate method, the method responsible for
constructing arguments for the fuzzing target from a parameter
sequence using one or more parametric generators, when generate
is supplied with the parameter sequence. The parametric call tree

ICSE °24, April 14-20, 2024, Lisbon, Portugal

L generate e
nextByte nextByte nextByte
line 2 1line 4 line 5 generate generate

[0,1) [1,2) [2.3) Line 7 line 7
TN RN

nextByte nextByte nextByte nextByte nextByte nextByte
line 2 line 4 line 9 line 2 line 4 line 5
[3.4) [4.5) [5.6) [6.7) [7.8) [8.9)

98 o 120

(a) Parametric call tree and crossover points for Parent A.

............................ P m m m m m o m e e e e e e e e e e et

] 121 0 99 1 ()

e e e e e e e e e e e e e e e m e m m o m m o m de it

97 1 2 i 101 90 76 102

Katherine Hough and Jonathan Bell

generate

% 1

nextByte nextByte nextByte
line 2 line 4 line 5 generate

[0, 1) [1,2) [2,3) / linf 7 \‘\)

nextByte nextByte nextByte
line 2 line 4 line 5 generate

[3.4) [4,5) [5.6) line 7
nextByte nextByte nextByte
line 2 line 4 line 9
[6,7) [7.8) [8,9)
100 1 1 101 90 76 102 [121

(b) Parametric call tree and crossover points for Parent B.

<a>
<e>
<f>y</f>
</e>
<c></c>

(c) Child sequence (left) and the XML structure generated when the child is applied to the generator in Listing 1 (right).

Figure 2: Parent parametric call trees (top), crossover points (middle), and the child parameter sequence (bottom) for a linked
crossover. Parametric call trees are depicted for the generator executions produced when applying the parent parameter sequences in
Figures la and 1b to the generator in Listing 1. Each vertex contains the name of the method called and the line on which it was called.
Parameters requests consumed by calls to nextByte on lines 2, 4, 5, and 9 are colored green, yellow, blue, and red, respectively. The third line
of each parameter request indicates the parameter sequence interval consumed by the request. Arrows represent caller-callee relationships.
Below each tree, we show the parent parameter sequence and the crossover points linked to the vertex circled in the tree. Crossover points
are marked with solid orange lines. Below the parents, we show the child parameter sequence produced from crossing over the parents at
the marked points. The dotted and dashed lines enclose the portions of the child that were transferred from Parents A and B, respectively.

consists of a set of vertices representing method calls and edges
representing caller-callee relationships. Each vertex has exactly one
parent, its caller, except the root of the tree, which has no parent
and represents the initial call to generate. Each vertex v has zero
or more child vertices representing method calls made directly by
v, ie., its callees. A vertex v is a descendant of a vertex u if the
simple path from the root of the tree to v contains u; every vertex
is a descendant of itself. Therefore, a vertex v is a descendant of a
vertex u if the method call represented by v was made during the
execution of the method call represented by u or v = u.

Vertices corresponding to calls to methods provided by the para-
metric fuzzer that directly consume bytes from the parameter se-
quence (e.g., the nextByte method used in Listing 1) are annotated
with the interval of the parameter sequence that was consumed
by the call. We refer to these annotated vertices as “parameter re-
quests”. A parameter request has no children by construction. A
method call is represented in the parametric call tree if and only if
it is a parameter request or at least one parameter request occurred
during the execution of that method call. Therefore, for every vertex
v in a parametric call tree, there exists some parameter request u
that is a descendant of v.

In theory, the parametric call tree could be defined per thread
of execution. However, since parametric generators are single-
threaded (regardless of whether the application under test is multi-
threaded), parameter requests only occur in a single thread. Thus,
we will discuss only a single parametric call tree for each input
parameter sequence.

As an example, consider the generator in Listing 1 and the para-
metric input depicted in Figure 1a. The parametric call tree for

the execution of generate induced by the parameter sequence in
Figure 1a is shown in Figure 2a. The root vertex represents the call
to generate. The leftmost child of the root represents the first call
to nextByte on line 2. This vertex is a parameter request and is
associated with the interval [0, 1) because the first call to nextByte
consumed the first byte of the parameter sequence. The next two
leftmost children of the root vertex represent the calls to nextByte
on lines 4 and 5. The two rightmost children of the root vertex rep-
resent recursive calls to generate made on line 7. Each of these two
vertices has three children, each representing a call to nextByte.

3.2 Linked Crossover

Computing Crossover Points. When performing linked crossover,
the crossover points for a parent input are computed based on a ver-
tex selected from the parent’s parametric call tree using Algorithm 2.
The computed crossover points split the parent input before and
after the portion of the parameter sequence that was used by the
parameter requests made during the execution of the method call
represented by the vertex. This preserves boundaries corresponding
to method calls in the input increasing the chance that high-fitness
subsequences in parent inputs appear in their children.

For example, consider the circled vertex in Figure 2a. There
are three parameter requests that are a descendant of this vertex.
The union of the intervals associated with these requests is [3, 6)
corresponding to the crossover points depicted in Figure 2a.

Selecting Vertices. In order to leverage vertex-based crossover
points to combine inputs from a population, linked crossover begins
by selecting two vertices: a “recipient” and a “donor”. Given a parent

Crossover in Parametric Fuzzing

Algorithm 2 Computing crossover points for a vertex.

Input: parametric call tree vertex v

Output: a pair of crossover points

: D « the set of parameter requests that are a descendant of v
S<{}

: for eachd € D do

S « S U interval of parameter sequence consumed by d
: end for

. return min(S), max(S) + 1

AN -

input, referred to as the “primary” parent, linked crossover begins
by selecting a recipient vertex at random from eligible vertices in
the primary parent’s parametric call tree. A vertex v is eligible to
be a recipient if the following is true:

(1) There does not exist some vertex u, such that the set of param-
eter requests descended from v is equal to those descended
from u and the method call represented by u happened before
the method call represented by v.

(2) v is not the root of the parametric call tree.

(3) There are at least two different parameter requests that are
a descendant of v.

The first criterion is violated if a vertex does not have a sibling.
A vertex does not have a sibling if every parameter request that
occurred during the caller of the method represented by the ver-
tex occurred during execution of the method represented by the
vertex. The first criterion ensures that there is only one eligible
vertex corresponding to each distinct pair of crossover points. If
two vertices, u and v, have the same set of descendant parameter
requests, then the crossover points for v and u are the same. There-
fore, when two or more vertices have the same set of descendant
parameter requests, only the vertex corresponding to the earliest
method call is eligible to be a recipient. The second criterion guards
against producing a child that is overly dissimilar to the primary
parent: if v is the root of the parametric call tree, then selecting v
as the recipient will replace the entire parameter sequence for the
primary parent. The third criterion is a heuristic that guards against
producing a child that is overly similar to the primary parent: if
only one parameter request is a descendant of v, then selecting v
as the recipient will replace only a small portion of the parameter
sequence for the primary parent. Future work could explore other
heuristics for selecting recipient vertices.

Next, linked crossover selects a secondary parent at random
from the set of eligible members of the population. A member of
the population is eligible to be the secondary parent if its call tree
contains at least one eligible vertex. Every vertex that represents
a call to the same method as the recipient is eligible to act as the
donor vertex, even vertices that do not satisfy the recipient eligi-
bility requirements. This criterion increases the chance that the
donated subsequence is interpreted similarly by the generator for
the child as it was for the secondary parent. To reduce the per-
formance impact of selecting secondary parents, the fuzzer can
maintain a mapping from each method to the set of members of the
current population that are eligible to act as the secondary parent
for a linked crossover targeting a recipient vertex representing that
method. Once a secondary parent is selected, a donor vertex is

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

selected at random from eligible vertices in the secondary parent’s
parametric call tree.

Application. Algorithm 3 describes how to apply a linked crossover
between a primary and secondary input based on a selected recipi-
ent vertex and donor vertex. Crossover points are computed based
on the recipient and donor vertex, as described above. Standard
two-point crossover is then performed replacing the portion of
the primary parent’s parameter sequence that lies between the
crossover points computed for the recipient vertex with the portion
of the secondary parent’s parameter sequence that lies between the
crossover points computed for the donor.

Algorithm 3 Applying a linked crossover.

Input: primary parent x < (xo, X1, ...,Xp—1), secondary parent
y «— (Yo, Y1, - -»Ym—1), recipient vertex r, donor vertex d
Output: child sequence
1: i, j « crossover points computed for r using Algorithm 2
2: k, I « crossover points computed for d using Algorithm 2
3 return (x0,x1,...,%Xi-1) + (YpUYkats--->Y1—1) +
(Xjs Xjals - - o5 Xn—1)

Figure 2 depicts a linked crossover between the two inputs in
Figure 1. The recipient vertex is the call to the method generate
circled in orange in Figure 2a. The donor vertex is the call to the
method generate circled in orange in Figure 2b. The union of the
interval of parameter requests descended from the recipient ver-
tex is [3,6) and from the donor vertex is [3,9). These intervals
correspond to the crossover points marked with orange lines in
Figures 2a and 2b. The portion of the sequence in Figure 2a be-
tween the marked crossover points is replaced with the portion of
the sequence in Figure 2b between the marked crossover points
producing the child sequence depicted in Figure 2c.

When applying multiple linked crossover operations to the same
primary parent input additional considerations must be made be-
cause an operation may shift subsequent portions of the input if
the size of the donated subsequence is not equal to the size of the
replaced subsequence. Additionally, if two operations impact non-
disjoint intervals of the primary parent’s parameter sequence, only
one of the operations can be applied because the same parameter
should only be replaced once.

When applying multiple linked crossover operations on the same
primary parent, begin by sorting the operations into non-increasing
order by the start of the interval they impact (as determined by the
recipient vertex of the application). Then, process each operation
in order. If an operation targets an interval that is non-disjoint with
an interval targeted by an operation that has already been applied,
skip it. Otherwise, apply the operation as normal replacing the
portion of the primary parent within the interval targeted by the
operation with the operation’s donated subsequence.

Applying the linked crossover operations in non-increasing or-
der by the start of the interval they impact ensures that parameters
in positions before the start of the interval targeted by the last oper-
ation applied remain in their original positions. When a crossover
operation is about to be applied, the interval that it targets must
be disjoint with the interval targeted by the last operation applied,
otherwise the operation would have been skipped. Furthermore,

ICSE °24, April 14-20, 2024, Lisbon, Portugal

the start of the interval targeted by the operation cannot be greater
than the start of the interval targeted by the last operation applied.
Therefore, when an operation is applied, the interval that it targets
must start and end before the start of the interval targeted by the
last operation applied. Thus, the operation can be applied normally
without adjusting the replacement interval.

4 IMPLEMENTATION

Although we believe that linked crossover is suitable for many lan-
guages, we implemented linked crossover as part of ZEUGMA, a new
parametric fuzzer for Java. For the sake of simplicity, we chose to use
branch coverage feedback for ZEuGMA. However, linked crossover
could be used with other forms of feedback such as Padhye et al.
[46]’s input-validity feedback. ZEUGMA collects branch coverage
and method call information using the ASM instrumentation and
analysis framework to rewrite Java bytecode [44]. Like JQF [45] (the
parametric fuzzing framework used to create ZesT, BED1vFuzz, and
RLCHECK), ZEUGMA is implemented on top of JUNIT-QUICKCHECK
[19], a property-testing library inspired by QuickCHECK [10]. JUNIT-
QUICKCHECK leverages user-defined generators to create random
test inputs. These generators use a high-level API provided by
JUNIT-QUICKCHECK to create arbitrary values of common types.
ZEUGMA integrates into JUNIT-QUICKCHECK by using fuzzer-derived
parameter sequences to determine these arbitrary values.

Updating the Population. ZEuGMA implements the generic
fuzzing algorithm described in Section 2.1. Branch coverage feed-
back is used to determine which inputs should be included in the
population. For each branch that has been covered by at least one
input, ZEUGMA tracks the shortest input that covered that branch.
The set of tracked inputs form the population.

Modifying Inputs. When creating a child input, ZEuGMA se-
lects the primary parent from the population at random. Then,
ZEUGMA chooses the total number of mutation and crossover oper-
ations to apply to the primary parent. This number is chosen from
a shifted geometric distribution with a success probability of 0.25
(corresponding to an expected value of four). This value can be
fine-tuned; preliminary experiments that we conducted suggested
that a probability of 0.25 was an effective choice across all subjects.
ZEUGMA uses the same replacement-based mutation operator de-
scribed by Padhye et al. [46] with a mean mutation length of eight.
The mean mutation length can be fine-tuned; preliminary exper-
iments that we conducted suggested that eight was an effective
choice across all subjects.

ZEUGMA can be configured to use mutation only, to use tradi-
tional one-point crossover, to use traditional two-point crossover,
or to use our novel linked crossover. We describe our evaluation of
these options in Section 6. For one- and two-point crossover, the sec-
ond parent is selected at random from the population, and crossover
points are selected at random. Linked crossover is performed as
described in Section 3.2.

If ZEuGMA has been configured to use mutation only, then all
the operations are mutation. Otherwise, ZEUGMA chooses between
mutation and crossover at random with an equal likelihood of
selecting either option. If ZEuGMA has been configured to use linked
crossover, then all linked crossover operations are applied first in
the manner described in Section 3.2, then the mutation operations

Katherine Hough and Jonathan Bell

are applied. Otherwise, operations are applied in the order they are
selected.

Building the Parametric Call Tree. ZEUGMA uses bytecode in-
strumentation to build parametric call trees allowing linked crossover
to work on unmodified JUNIT-QUICKCHECK generators. ZEUGMA
adds code at the start of methods that records that the method was
entered and before method returns that records that the method
was exited. ZEUGMA’s integration with JUNIT-QUICKCHECK records
when a portion of the parameter sequence is consumed. These
recorded messages are ignored by ZEUGMA unless it is actively
building a parametric call tree.

Parametric call trees are only needed when ZEuGMA is config-
ured to use linked crossover and for inputs that will be saved to
the population. Hence, before ZEuGMA saves an input to the pop-
ulation, it re-executes the generate method with the input and
observes messages recorded about method entries, method exits,
and parameter consumptions. A stack is used to track the call stack.
When a method is entered, a new vertex is created for the method
call and pushed onto the stack. When a parameter is consumed,
the index of that parameter is then associated with the vertex at
the top of the stack and the top vertex is marked as a parameter
request. When a method is exited, the top vertex is popped off of
the stack. If the popped vertex is not associated with the index of at
least one parameter, and it has no children, then the vertex is not a
parameter request and no parameter requests occurred during the
execution of the method call represented by the vertex. As noted
in Section 3.1, a method call is included in the parametric call tree
only if it is a parameter request or at least one parameter request
occurred during the execution of that method call. Therefore, the
popped vertex is discarded. If the popped vertex is not discarded,
then the vertex on the top of the stack is marked as the parent of the
popped vertex. If there is no vertex on the top of the stack, i.e., the
stack is empty, then the popped vertex is recorded as the root of
the tree.

5 LIMITATIONS

Linked crossover is a heuristic approach; its efficacy is dependent
on the structure of the generators. If the generators are not split
into methods or the methods do not correspond to logical bound-
aries, then linked crossover will be ineffective. This limitation only
applies to the structure of the generators and not the entire system
under test. However, we do not believe that this is a significant
limitation, as best practices for writing QUICKCHECK-style genera-
tors rely on composition. Claessen and Hughes [10] explain that
combinators can be used to combine simple generators into com-
plex generators. This compositional style results in method calls
that are responsible for creating a single subcomponent, and, there-
fore, likely correspond to reasonable logical boundaries. Linked
crossover’s dependency on methods could be mitigated by using
additional dynamic execution information or techniques such as
method call sites, dynamic slices, and dynamic information flows.
This is an interesting direction for future research.

Crossover in Parametric Fuzzing

6 EVALUATION

For our evaluation, we examined linked crossover’s impact on over-
all fuzzer performance and its ability to produce children that pre-
serve desirable traits from their parents — a property referred to
by Raidl and Gottlieb [48] as heritability. We created two novel
heritability metrics for evolutionary fuzzing, hybrid proportion and
inheritance rate, which we describe in Section 6.1.1. We also exam-
ined the impact of linked crossover on overall fuzzer performance
using traditional metrics. Our evaluation of linked crossover fo-
cused on answering the following research questions:

RQ1: How does linked crossover compare to other crossover opera-
tors with respect to heritability?

RQ2: How does ZEuGMA with linked crossover’s ability to discover
coverage-revealing inputs compare to state-of-the-art para-
metric fuzzers?

RQ3: How does ZEuGMA with linked crossover’s ability to detect
defects compare to state-of-the-art parametric fuzzers?

6.1 Methodology

We evaluated ZEUGMA on benchmark suite of seven real-world Java
projects consisting of the five subjects used by Padhye et al. [46] in
their evaluation of ZesT (Ant, BCEL, Closure, Maven, and Rhino)
and the two additional subjects used by Nguyen and Grunske [38]
in their evaluation of BED1vFuzz (Nashorn and Tomcat). We list
these subjects in Table 1. We used the latest stable release of each
subject available in the Maven Central Repository. Minor modifica-
tions were made to the fuzzing targets used by Padhye et al. [46]
and Nguyen and Grunske [38] to ensure compatibility with the
newer subject versions. We used the JUNIT-QUICKCHECK generators
included with JQF (version 2.0) [50] for XML, JavaScript, and Java
classes. We changed the configuration for the XML generator to
increase the maximum depth of generated XML trees to ten as
Kukucka et al. [23] found that deeper trees were necessary to exer-
cise certain functionality in Maven. No changes were made to the
generator itself.

In order to compare linked crossover against other crossover
operators, we created four variants of ZEuGmA. The first vari-
ant, ZEUGMA-X, does not use crossover at all. The other variants,
ZEUGMA-LINK, ZEUGMA-1PT, and ZEuGMA-2PT, use linked, one-
point and, two-point crossover, respectively. These variants differ
from each other only with respect to the application of crossover
as described in Section 4.

Table 1: Evaluation Subjects. For each subject, we list the project
name and version (Project), the format of the input (Format), and
the number of branches as reported by JACoCo (Branches).

Project Format Branches
Apache Ant (1.10.13) [1] XML 24626
Apache BCEL (6.7.0) [4] Java class 5975
Google Closure (v20230502) [13] JavaScript 129376
Apache Maven (3.9.2) [5] XML 14886
OpenJDK Nashorn (11.0.19) [39] JavaScript 28191
Mozilla Rhino (1.7.14) [33] JavaScript 26690
Apache Tomcat (10.1.9) [6] XML 39020

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

6.1.1 RQI: Heritability. In an evolutionary search, an effective
crossover operator produces children that preserve desirable traits
from their parents — a property referred to by Raidl and Gottlieb
[48] as heritability. For an evolutionary fuzzer, the primary trait of
interest for an input is its ability to cover program features (typ-
ically branches or statements). We propose two coverage-based
heritability metrics for evolutionary fuzzing: inheritance rate and
hybrid proportion. Inheritance rate considers the percentage of pro-
gram features covered by at least one of an input’s parents that
were also covered by the input for a typical input produced by
a crossover operator. Hybrid proportion measures the likelihood
that a crossover operator produces a child that covers at least one
feature exclusively covered by each of its parents.

Inheritance rate and hybrid proportion aim to measure common-
alities between a child and its parents — they do not try to measure
whether the child covers new program features. Although addi-
tional coverage is generally positive in fuzzing, it is not necessarily
indicative of a high-quality crossover. The additional coverage could
represent an undesirable deviation from the parents’ behavior, or
it could be a positive effect of combining parts of the parents’ be-
havior. Therefore, program features covered by the child but not
its parents are neither penalized nor rewarded when computing
inheritance rates and hybrid proportions.

Consider a child ¢ produced by applying a crossover operator to
parents p; and py. Let X be a set of “common” features — program
features that are covered by a high percentage of random inputs.
Common features are excluded when computing inheritance rate
and hybrid proportion because covering a common feature does not
necessarily represent a unique, desirable property of a particular
input. Let P;, P2, and C be the set of program features not in X
covered by p1, p2, and c, respectively. We define the inheritance rate,
denoted IR, of a crossover as the percentage of program features
covered by either parent that were also covered by the child:

[(P1UP2)NC|

|P1 U Pyl
We say that a crossover is a hybrid, denoted HY, if the child covers
at least one feature that is covered by the first parent but not the

second parent, and the child covers at least one feature that is
covered by the second parent but not the first parent:

HY(P1,P2,C)=(x € C:x € Py Ax ¢ Py)
ANIyeC:yePyAy¢Pp)

IR(Py, P, C) =

These metrics are extended to the operator itself by considering
the distribution of inheritance rates and the proportion of children
that are hybrids for some sample of parents.

In order to collect a representative sample of parent inputs, we
performed twenty fuzzing campaigns using ZEUGMA-X on the sub-
jects listed in Table 1 and recorded the state of the corpus after five
minutes. We chose to use the state of the corpus after five minutes
because we found that, on average, over half of the inputs saved to
corpus after three hours were saved in the first five minutes (mean
=57.8%, median = 61.8%, minimum = 29.8%, maximum = 78.2%). We
collected branch coverage using ZEUGMA’s instrumentation, and
considered all coverage including system classes. To ensure that
non-repeatable coverage due to class loading did not impact the
results, if a class was loaded during the execution of an input, the

ICSE °24, April 14-20, 2024, Lisbon, Portugal

input was re-executed, and the coverage recording from the second
execution was used. We identified the set of common features, X, by
executing 1,000 random inputs for each subject. Any branch that
was covered by a majority of these random inputs was marked as
common.

To compute the heritability metrics, we sampled 1,000 pairs of
parents for each subject. Each sample was selected by choosing two
parents at random from a randomly selected corpus produced for
the subject. Samples were re-selected until both parents covered at
least one branch not in the common feature set and not covered by
the other parent to ensure that it was possible to produce a hybrid
child from the pairing. For each sample, we produced one child
for each of the three crossover operators — linked, one point and
two point — and recorded whether the child was a hybrid and its
inheritance rate.

6.1.2 RQ2 and RQ3: Coverage and Defects. Our second and third re-
search questions evaluate the impact of linked crossover on branch
coverage and defect detection ability. In addition to the three vari-
ants of ZEUGMA without linked crossover, we also compared our
approach against ZEsT [46], BED1vFuzz [38], and RLCHECK [49].
We used the latest releases at time of writing of ZEsT (version 2.0)
and BED1vFuzz (commit cO6eaca) which include improvements
to the coverage instrumentation. For BED1vFuzz, we evaluated
both of the configurations described by Nguyen and Grunske [38]:
BeD1v-STRUCT and BED1v-SIMPLE. Because our reported values
are based only on saved inputs, we modified BED1vFuzz to en-
sure that all inputs that reveal new coverage are saved — not just
“valid” inputs. For the same reason, we choose to use the “grey-box”
version of RLCHECK because the grey-box version saves coverage-
revealing inputs to a corpus. We did not compare ZEUGMA against
CoNFETTI [23] because CONFETTI only supports Java version 8, and
the latest release of ZEST requires Java version 9 or greater.

BeD1vFuzz and RLCHECK cannot use JUNIT-QUICKCHECK gener-
ators out of the box; they require the generators to be manually
modified. For the XML and JavaScript generators, we used the gen-
erators created by Nguyen and Grunske [38] and Reddy et al. [49]
to evaluate BED1vFuzz and RLCHECK, respectively. Neither Nguyen
and Grunske [38]’s evaluation of BED1vVFuzz nor Reddy et al. [49]
evaluation of RLCHECK included a Java class generator. Therefore,
we created a modified version of the Java class generator included
with JQF for BED1vFuzz. Unfortunately, the documentation for
RLCHECK did not provide sufficient detail for us to create a modi-
fied Java class generator for RLCHECK; therefore, we do not include
results for RLCHECK on BCEL.

Following best practices suggested by Metzman et al. [34], we
used an independent code coverage metric — branch coverage
collected with JACoCo (version 0.8.7) [37]. In order to calculate
branch coverage, we reran inputs saved by the fuzzer in a JaACoCo-
instrumented Java Virtual Machine (JVM) after the campaign fin-
ished. Coverage was measured only in application classes (those
found in the JAR files associated with the subject). For Nashorn, we
further limited coverage to only include classes related to Nashorn,
those with the package prefix jdk.nashorn. Nashorn is part of the
Java Class Library (JCL) and including all JCL coverage would bias
results in favor of fuzzers that heavily depend on parts the JCL

Katherine Hough and Jonathan Bell

Table 2: Heritability Metrics. For each crossover operator, we
report the proportion of samples that were hybrids (HY) and the
median inheritance rate (IR) on each subject. The largest value for
each metric on each subject is highlighted in blue. Values that differ
significantly from that of linked crossover are colored red.

Linked One Point Two Point
Subject HY IR HY IR HY IR
Ant 0.561 0.923 0.459 0.124 0.493 0.069

BCEL 0.283 10.512 0.660 0.347 0.756 0.286
Closure 0.742 0.717 0.661 0.101 0.712 0.094
Maven 0.446 0.589 0.404 0.497 0.399 0.453
Nashorn 0.622 0.646 0.548 0.117 0.591 0.132
Rhino 0.611 10.502 0.599 0.263 0.643 0.255
Tomcat 0.322 0.775 0.350 0.276 0.328 0.279

(e.g., java.lang.String and java.util.HashMap) inflating their
coverage.

In order to measure defect detection ability, we collected the
failures detected for each campaign by rerunning inputs saved by
the fuzzer in a new JVM after the campaign finished. If a saved
input induced a failure, we recorded the type (e.g., java.lang.
RuntimeException) and stack trace of the failure induced by the
input. Failures with the same type and top five stack frames were
initially marked as the same failure. We then manually inspected
the set of distinct failures to map the failures to a set of unique
defects. All of the identified defects were reported and confirmed
by a developer for the associated project.

Twenty trials were conducted for each fuzzer on each subject in
accordance with current best practices [22]. Each campaign was
performed on its own virtual machine with four 2.6 GHz AMD
EPYC 7H12 vCPUs, with 16 GB of RAM, running Ubuntu 20.04.3,
and using the Oracle Java Development Kit (JDK) version 11.0.19.
No seeds were provided for any subject. The original dictionaries
created by Padhye et al. [46] and Nguyen and Grunske [38] were
used for the XML subjects. Similar to the evaluation performed by
Padhye et al. [46] and Kukucka et al. [23], generators were limited
to producing inputs that used 10,240 or less raw input bytes.

Because parametric fuzzing is typically used for property-based
testing, the effectiveness a parametric fuzzer on relatively short
campaigns is of particular interest [38, 49]. However, longer cam-
paigns may be more indicative of general performance trends [22].
Therefore, we chose to evaluate the effectiveness of linked crossover
on both short (five minute) campaigns like Reddy et al. [49] and
long (three hour) campaigns like Padhye et al. [46].

6.2 RQ1: Heritability

Table 2 summarizes the results of our heritability experiment. We
performed pairwise comparisons of the inheritance rates and hybrid
proportions measured on each subject for the different crossover
operators using two-tailed Mann-Whitney U tests and Fisher’s ex-
act tests, respectively. Following current best practices as described
by Arcuri and Briand [7], a base significance level of 0.05 was ad-
justed for three comparisons resulting in a Bonferroni-corrected
significance level of O'Sﬁ = 0.0167 per test. Inheritance rates for

Crossover in Parametric Fuzzing

linked crossover were statistically significantly greater than for
one- and two-point crossover on all subjects. Linked crossover had
a significantly greater hybrid proportion compared to one-point
crossover on Ant, Closure, and Nashorn; and compared to two-point
crossover on Ant. However, linked crossover had a significantly
lower hybrid proportion compared to one- and two-crossover on
BCEL. All other differences between linked crossover and the other
operators were not significant. Full results of the pairwise com-
parisons are included in the supplemental materials for this paper.
Overall, linked crossover produced children that inherited more
desirable traits from their parents (i.e., covered a higher percentage
of the branches covered by their parents) while still combining
traits from both parents.

6.3 RQ2: Coverage

Figure 3 and Table 3 summarize the results of our coverage exper-
iment. Figure 3 shows median, minimum, and maximum branch
coverage across the twenty trials over time for each fuzzer on each
subject. Table 3 shows median coverage values for each fuzzer after
five minutes (short duration) and three hours (long duration). On
each subject, we performed pairwise comparisons of the branch
coverage for short and long campaigns for the different fuzzers
using Mann-Whitney U tests. A base significance level of 0.05 was
adjusted for 28 comparisons resulting in a Bonferroni-corrected sig-
nificance level of % = 0.00179 per test except on BCEL. For BCEL,
the significance level was adjusted for 21 comparisons (due to the
exclusion of RLCHECK) resulting in a corrected significance level
% ~ 0.00238. Statistically significant differences between the
branch coverage of ZEuGMA-LINK and the other fuzzers are colored
red in Table 3. We also used the Vargha-Delaney Ay statistic [53]
to quantify effect sizes for these comparisons. The full results of
these tests are included in our supplemental materials.

ZEuGMA-LINK had the highest median coverage on all subjects
except Tomcat after five minutes and on all subjects except Ant after
three hours. On the three JavaScript subjects (Closure, Nashorn, and
Rhino), ZEUGMA-LINK’s branch coverage was significantly greater
than that of all other fuzzers on both long and short campaigns, ex-
cept ZEuGMA-X on five-minute Closure campaigns. On the only Java
class subject (BCEL), ZEuGMA-LINK outperformed BED1V-SIMPLE,
BeD1v-StrucT, RLCHECK, and ZEUGMA-2PT on long and short cam-
paigns. However, ZEuGMA-LINK only performed significantly better
than ZesT, ZEUGMA, and ZEUGMA-1PT on long BCEL campaigns.
We carefully examined this fuzzing target and believe that, in order
to achieve further improvements in coverage, the generator should
be improved to be more likely to generate valid Java method bod-
ies. Results on the three XML subjects (Ant, Maven, and Tomcat)
were more mixed. As depicted in Figure 3, coverage for most of
the fuzzers plateaued on these three subjects. Our analysis of these
fuzzing targets revealed that limited coverage is reachable from
the drivers for these subjects. ZEUGMA-LINK performed as well as
or better than the other fuzzers on all the XML subjects except on
long Ant campaigns where ZEUGMA-LINK’s branch coverage was
significantly less than that of ZesT. For all subjects, we found that
the effect size was large (A;2 > 0.71) for all comparisons in which
the performance of a baseline fuzzer differed significantly from that
of ZEUGMA-LINK.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

BeD1vFuzz, ZesT, and RLCHECK performed notably poorly on
Nashorn. These fuzzers are all built using JQF which does not add
and cannot be configured to add coverage instrumentation to classes
with the package prefix jdk. Since the classes related to Nashorn
are found in jdk.nashorn, the JQF-based fuzzers did not receive
critical coverage feedback for Nashorn. Given that our primary
goal is to evaluate the efficacy of linked crossover (as opposed
to comparing all variants of ZEUGMA against BED1vFuzz, ZEsT,
and RLCHECK), we did not find it necessary to make the invasive
changes to JQF necessary to collect coverage in these packages.

In general, linked crossover was demonstrably effective at dis-
covering coverage-revealing inputs in both long and short cam-
paigns. It consistently performed as well as or better than other
forms of crossover and against state-of-the-art parametric fuzzers.
Linked crossover was generally more effective on subjects using
the JavaScript or Java class generator, possibly indicating that its
efficacy may be impacted by either the nature of the generator or
the input type itself. However, this could also be a product of driver
limitations for the XML fuzzing targets. Future work may study
how to measure and improve the quality of fuzzing targets.

6.4 RQ3: Defects

Across all the campaigns, a total of twelve unique defects were
detected: two in BCEL (B0-B1), two in Closure (C0-C1), three
in Nashorn (N0-N2), and five in Rhino (R0-R4). Table 4 lists the
percentage of campaigns for each fuzzer in which each of these
defects was discovered (the detection rate) within the first five
minutes and after the full three hours of the campaign. For each
defect, we performed pairwise comparisons of the detection rate
for short and long campaigns for the different fuzzers using Fisher’s
exact tests with the same Bonferroni-adjusted significance levels
used in Section 6.3. Statistically significant differences between
ZEUGMA-LINK and other fuzzers are colored red in Table 4. Full
results of these tests are included in our supplemental materials.

ZEUGMA-LINK had the highest detection rate for nine of the
twelve defects within the first five minutes (short campaigns) and
eight out of the twelve defects after the full three hours (long cam-
paigns) of the campaign. This suggests that linked crossover may
positively impact a fuzzer’s ability to detect defects. For the short
campaigns, the Fisher’s exact tests indicated that most of the differ-
ences in detection rate between the fuzzers were not significant. For
long campaigns, ZEUGMA-LINK’s detection rate for five defects (NO,
N2, R0, R2, R4) was significantly higher than that of BED1v-SIMPLE,
BeD1v-StrucT, RLCHECK, and ZEsT. Interestingly, ZEUGMA-LINK's
detection rate never differed significantly from that of ZEuGMA-X,
although, in some cases, it was superior to that of ZEugma-1PT
and ZEUGMA-2PT.

6.5 Threats to Validity

We evaluated linked crossover on only seven subjects. These subject
may not be representative of all programs. However, these subjects
are all mature, well-established projects. Furthermore, we included
all the Java subjects evaluated by Padhye et al. [46], Reddy et al.
[49], Kukucka et al. [23], or Nguyen and Grunske [38].

Our evaluation featured generators for only three different input
types: JavaScript, XML, and Java class. We did not evaluate the

ICSE °24, April 14-20, 2024, Lisbon, Portugal Katherine Hough and Jonathan Bell

2000

800 Y2 g s
F 1500 1000047

600

1000

100 5000

200 500
—— BEDIV-SIMPLE —— ZEUGMA-X

BED1v-STRUCT —— ZEUGMA-1PT 0 0 100 150) EQ 100 150) EQ 100 150

—— RLCHECK ZEUGMA-2PT
—— ZgsT —— ZEuGMA-LINK (a) Ant (b) BCEL (c) Closure

8000

1000 . — 005
6000] /57 3000 ?—/
750 »
0 200

1000

100
250 2000 1000

0 0 50 100 150 ! 0 50 100 150 {) 50 100 150 (0 50 100 150

(d) Maven (e) Nashorn (f) Rhino (g) Tomcat

Figure 3: Branch Coverage Over Time. Each x-axis is time in minutes and each y-axis is the number of covered branches. Each plot
depicts the median number of covered branches (solid line) and the range of covered branches (filled area) across the 20 trials over the
duration of the fuzzing campaign for each of the fuzzers.

Table 3: Branch Coverage. For each fuzzer, we report the median branch coverage in application classes for each subject across 20 fuzzing

campaigns after five minutes (5M) and three hours (3H). The largest median or medians (in the case of a tie) for each time and subject is
highlighted in blue. Branch coverage values that differ significantly from ZEUGMA-LINK’s are colored red.

Subject Ant BCEL Closure Maven Nashorn Rhino Tomcat
Fuzzer 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H

BED1v-SIMPLE 755.0 899.0 14355 1846.5 9328.0 11863.5 590.5 738.0 3008.5 3319.5 2952.0 32355 274.5 341.0
BED1v-STRUCT 786.5 896.5 1412.5 1876.5 9336.5 11904.5 578.5 641.5 2993.5 3092.0 2915.5 3237.0 161.0 2425
RLCHECK 769.0 889.0 - — 82625 9480.5 579.0 663.0 1298.0 1298.0 2627.0 2730.0 '299.0 338.0
ZEST 820.0 927.0 1516.5 1909.5 9782.5 12352.0 778.5 10985 2654.5 2717.0 3108.5 3408.0 295.0 340.0
ZEUGMA-X 835.5 911.0 1480.5 1927.0 10274.5 12251.0 873.0 1138.0 4259.0 7411.0 3169.0 3551.5 297.5 345.0
ZEUGMA-1PT 828.0 909.5 1489.0 1917.0 10237.5 12153.5 855.5 1138.0 4166.0 7369.5 3169.0 3572.5 294.0 344.0
ZEUGMA-2PT 819.5 910.0 1472.0 1915.0 10284.0 12038.0 797.0 1134.0 3962.5 7310.0 3143.0 3549.0 291.0 3415
ZEUGMA-LINK 8455 911.5 15415 1959.0 10395.5 12709.0 906.0 1138.0 5568.5 7654.0 3233.5 3703.0 2955 345.0

Table 4: Defect Detection Rates. For each fuzzer, we report the defect detection rate of each discovered defect across 20 fuzzing campaigns
after five minutes (5M) and three hours (3H). The largest detection rate or rates (in the case of a tie) for each time and defect is highlighted in
blue. Detection rates that differ significantly from ZEuGMA-LINK’s are colored red.

Defect BO[2] B1[3] Co[11] C1[12] NO[42] NI1[40] N2[41] Ro[31]] RI1[30] R2[28] R3[29] R4[32]
Fuzzer 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H
BeD1vV-SIMPLE 0.00 0.65 0.00 0.00 0.00 0.05 0.15 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.45 0.00 0.00 1.00 1.00 0.00 0.00
BeDiv-StrucT 0.05 0.70 0.00 0.00 0.00 0.15 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.65 0.00 0.00 1.00 1.00 0.00 0.00

RLCHECK - — — — 0.00 0.10 0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
ZEST 0.00 '1.00 0.00 0.00 0.00 0.40 0.10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.05 0.95 0.00 0.20 1.00 1.00 0.00 0.05
ZEUGMA-X 0.05 '1.00 0.00 0.00 0.05 0.25 0.60 1.00 0.00 0.75 0.00 0.00 0.00 0.05 0.00 0.75 0.15 0.80 0.00 0.95 1.00 1.00 0.00 0.90

ZEUGMA-1PT 0.00 '1.00 0.00 0.10 0.00 0.40 0.50 1.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.70 0.10 0.75 0.00 0.85 1.00 1.00 0.00 0.85
ZEUGMA-2PT 0.25 1.00 0.00 0.10 0.00 0.40 0.80 1.00 0.00 0.45 0.00 0.05 0.00 0.05 0.00 0.60 0.10 0.90 0.00 0.70 1.00 1.00 0.00 0.85
ZEUGMA-LINK 0.25 1.00 0.00 0.00 0.00 0.65 0.60 1.00 0.05 1.00 0.00 0.00 0.00 0.50 0.00 0.80 0.10 0.70 0.00 0.85 1.00 1.00 0.00 0.95

impact of generator quality or style on the effectiveness of linked defect detection ability [21]. However, as noted by Metzman et al.
crossover. Generator quality is likely to impact any generator-based [34] the sparsity of bugs in programs makes it difficult to evaluate a
technique — not just linked crossover. To avoid potential bias, we fuzzer by analyzing detected defects alone. Therefore, we analyzed
used the generators included with JQF without modification. both branch coverage and defect detection rate.

We used branch coverage as a metric for evaluating fuzzer ef-
fectiveness in Section 6.3. Coverage is only weakly correlated with

Crossover in Parametric Fuzzing

7 RELATED WORK

Crossover in Unstructured Fuzzing. Generic crossover opera-
tors are often used by unstructured fuzzers, for example AFL [35],
AFL++ [16], and LiBFUzZzER [25]. As demonstrated in Section 6,
generic crossover operators are less effective than linked crossover
in parametric fuzzing. Lyu et al. [26] use Particle Swarm Opti-
mization to find the optimal selection probability distribution of
mutation and crossover operators.

Parametric Fuzzing. Padhye et al. [46] introduce the idea para-
metric fuzzing leveraging input-validity and coverage feedback to
guide input generation. Reddy et al. [49] use reinforcement learning
to guide generators to produce a diverse set of valid inputs. Nguyen
and Grunske [38] perform structural-aware mutation which dis-
tinguishes between structure-changing and structure-preserving
mutations to increase the behavioral diversity of inputs generated
by a parametric fuzzer. Kukucka et al. [23] improve on parametric
fuzzing by using “hinting”, a form of intelligent mutation. Hints
are identified based on comparisons against the input using con-
colic execution and taint tracking. Applied hints are saved to a
global dictionary shared between inputs. Like linked crossover, the
global dictionary allows high-fitness subcomponents to be trans-
ferred between inputs. Lampropoulos et al. [24] propose an alter-
native approach for guided and generator-based fuzzing that uses
type-aware mutation operators instead of mutating a parameter
sequence. These mutation operators are automatically synthesized
based on input types, allowing the fuzzer to mutate inputs at the
algebraic datatype. None of these approaches leverage crossover.

Specification-Based Fuzzing. Holler et al. [18] learn code frag-
ments from a corpus of seed inputs using a context-free grammar
for the input structure. Then, they modify inputs by randomly re-
placing fragments in the input with learned fragments of the same
type. Wang et al. [54] and Aschermann et al. [8] incorporate cover-
age feedback into grammar-based fuzzing by employing tree-based
mutation. One such mutation, “splicing mutation”, proposed by
Aschermann et al. [8] is a structured crossover that swaps sub-
trees between the derivation trees of two inputs. Srivastava and
Payer [52] improve upon Aschermann et al. [8]’s coverage-guided,
grammar-aware fuzzing approach by introducing larger, more “ag-
gressive” mutations and restructuring input grammars’ production
rules to eliminate sampling bias. Pham et al. [47] use file format
specifications to parse inputs into a virtual structure, a tree of file
chunks. They then define structural mutation operators that oper-
ate on a file’s virtual structure, such as, smart splicing — a form of
structured crossover that transfers chunks between files.

Like most structured crossover operators, linked crossover aims
to identify and exchange analogous, high-fitness subsequences
between inputs. However, linked crossover does not require an
input specification and is, therefore, capable of fuzzing inputs with
constraints that cannot be represented by a particular type of spec-
ification. Instead, linked crossover leverages dynamic execution
information to select crossover points.

Inferring Input Structure. You et al. [57] use a dynamic prob-
ing strategy to identify fields, regions of linked bytes, by observing
the effect of applied mutations while fuzzing. Identified fields are
then mutated using type-specific mutation strategies. You et al. [56]
identify input validity checks on portions of the input and employ

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

targeted mutation strategies to satisfy these checks. Blazytko et al.
[9] infer structural properties of input formats over the course of a
fuzzing campaign using code coverage feedback. Mathis et al. [27]
use dynamic taint tracking infer lexical tokens and generate seed
inputs for an input language.

Like these techniques, linked crossover infers properties of an
input structure based on system behavior observed at runtime. How-
ever, unlike these techniques, linked crossover uses relationships
between method calls and tracks input consumption to identify
analogous regions of inputs.

8 CONCLUSION

This work demonstrates that crossover point selection can have
a significant impact on overall fuzzer performance and that dy-
namic execution information can be effectively used to inform
the selection of crossover points in evolutionary fuzzing. Linked
crossover, our approach for using dynamic execution information
to select crossover points, produced children that inherited more de-
sirable traits from their parents than traditional one- and two-point
crossover. Our evaluation of linked crossover’s impact on fuzzer
performance found that linked crossover was effective at discover-
ing coverage-revealing inputs and defects in both long and short
campaigns. Based on these results, we believe that linked crossover
could potentially be adapted for use in unstructured fuzzing in
cases where the input is read in a stream-like or piecewise manner
by the application. The full results of the statistical tests that we
conducted in our evaluation are available in our supplemental mate-
rials [20]. ZEUGMA’s source code, our experimental scripts, and raw
experimental data are publicly available under the BSD 3-Clause
License: https://doi.org/10.6084/m9.figshare.23688879.v1.

ACKNOWLEDGMENTS

This work was funded in part by National Science Foundation
grants CCF-2100037 and CNS-2100015.

REFERENCES

[1] Apache Software Foundation. 2023. Apache Ant (version 1.10.13). https://ant.
apache.org/.

[2] Apache Software Foundation. 2023. Apache Commons BCEL Issue #367. https:
//issues.apache.org/jira/browse/BCEL-367.

[3] Apache Software Foundation. 2023. Apache Commons BCEL Issue #368. https:
//issues.apache.org/jira/browse/BCEL-368.

[4] Apache Software Foundation. 2023. Apache Commons BCEL (version 6.7.0).
https://commons.apache.org/proper/commons-bcel/.

[5] Apache Software Foundation. 2023. Apache Maven (version 3.9.2). https://maven.
apache.org/.

[6] Apache Software Foundation. 2023. Apache Tomcat (version 10.1.9). https:
//tomcat.apache.org.

[7] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219-250. https://doi.org/10.1002/stvr.1486
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1486

[8] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep

Bugs with Grammars. In 26th Annual Network and Distributed System Security

Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The

Internet Society, USA. https://doi.org/10.14722/ndss.2019.23412

Tim Blazytko, Cornelius Aschermann, Moritz Schlégel, Ali Abbasi, Sergej Schu-

milo, Simon Wérner, and Thorsten Holz. 2019. GRIMOIRE: Synthesizing Structure

While Fuzzing. In Proceedings of the 28th USENIX Conference on Security Sympo-

sium (Santa Clara, CA, USA) (SEC’19). USENIX Association, USA, 1985-2002.

[10] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP "00). Association for

—_
)

https://doi.org/10.6084/m9.figshare.23688879.v1
https://ant.apache.org/
https://ant.apache.org/
https://issues.apache.org/jira/browse/BCEL-367
https://issues.apache.org/jira/browse/BCEL-367
https://issues.apache.org/jira/browse/BCEL-368
https://issues.apache.org/jira/browse/BCEL-368
https://commons.apache.org/proper/commons-bcel/
https://maven.apache.org/
https://maven.apache.org/
https://tomcat.apache.org
https://tomcat.apache.org
https://doi.org/10.1002/stvr.1486
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1486
https://doi.org/10.14722/ndss.2019.23412

[23] James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell. 2022.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Computing Machinery, New York, NY, USA, 268-279. https://doi.org/10.1145/
351240.351266

Closure Compiler Authors. 2020. Google Closure Issue#3593. https://github.com/
google/closure-compiler/issues/3593.

Closure Compiler Authors. 2023. Google Closure Issue#4096. https://github.com/
google/closure-compiler/issues/4096.

Closure Compiler Authors. 2023. Google Closure (version v20230502). https:
//github.com/google/closure-compiler.

Kenneth Alan De Jong. 1975. An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. Ph. D. Dissertation. University of Michigan, USA. AAI7609381.
Kenneth A. De Jong and William M. Spears. 1991. An analysis of the interacting
roles of population size and crossover in genetic algorithms. In Parallel Problem
Solving from Nature, Hans-Paul Schwefel and Reinhard Méanner (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 38-47.

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, USA.

John H. Holland. 2000. Building Blocks, Cohort Genetic Algorithms, and
Hyperplane-Defined Functions. Evol. Comput. 8, 4 (dec 2000), 373-391. https:
//doi.org/10.1162/106365600568220

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proceedings of the 21st USENIX Conference on Security Symposium
(Bellevue, WA) (Security’12). USENIX Association, USA, 38.

Paul Holser. 2023. junit-quickcheck. https://github.com/pholser/junit-
quickcheck.

Katherine Hough and Jonathan Bell. 2024. Supplemental Materials for "Crossover
in Parametric Fuzzing". (12024). https://doi.org/10.6084/m9.figshare.24932631.v1
Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (Hyderabad, India) (ICSE 2014). Association for Comput-
ing Machinery, New York, NY, USA, 435-445. https://doi.org/10.1145/2568225.
2568271

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123-2138. https://doi.org/10.
1145/3243734.3243804

CON-
FETTI: Amplifying Concolic Guidance for Fuzzers. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE °22). Association for Computing Machinery, New York, NY, USA, 438-450.
https://doi.org/10.1145/3510003.3510628

Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage
Guided, Property Based Testing. Proc. ACM Program. Lang. 3, OOPSLA, Article
181 (oct 2019), 29 pages. https://doi.org/10.1145/3360607

LLVM Project. 2023. libFuzzer. https://llvm.org/docs/LibFuzzer.html.
Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1949-1966. https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

Bjorn Mathis, Rahul Gopinath, and Andreas Zeller. 2020. Learning Input Tokens
for Effective Fuzzing. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual Event, USA) (ISSTA 2020).
Association for Computing Machinery, New York, NY, USA, 27-37. https://doi.
org/10.1145/3395363.3397348

MDN Contributors. 2018. Mozilla Rhino Issue #397. https://github.com/mozilla/
rhino/issues/397.

MDN Contributors. 2018. Mozilla Rhino Issue #405. https://github.com/mozilla/
rhino/issues/405.

MDN Contributors. 2018. Mozilla Rhino Issue #406. https://github.com/mozilla/
rhino/issues/406.

MDN Contributors. 2018. Mozilla Rhino Issue #409. https://github.com/mozilla/
rhino/issues/409.

MDN Contributors. 2023. Mozilla Rhino Issue #1337. https://github.com/mozilla/
rhino/issues/1337.

MDN Contributors. 2023. Mozilla Rhino (version 1.7.14). https://github.com/
mozilla/rhino.

[34] Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Abhishek

Arya. 2021. FuzzBench: An Open Fuzzer Benchmarking Platform and Service.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 1393-1403. https://doi.org/10.1145/3468264.3473932

Michat Zalewski. 2023. American Fuzzing Lop (AFL). https://lcamtuf.coredump.
cx/afl/.

Melanie Mitchell, John H. Holland, and S. Forrest. 1992. The royal road for
genetic algorithms: Fitness landscapes and GA performance. In Toward a Practice

(37]

(38]

'@
20,

~
)

=
&

[47

(48

[49

o
=

(51

[52

[53

o
=

[55

[56

Katherine Hough and Jonathan Bell

of Autonomous Systems: Proceedings of the First European Conference on Artificial
Life. MIT Press, Cambridge, MA, USA, 245-254.

Mountainminds GmbH & Co. KG and Contributors. 2021. JaCoCo Java Code
Coverage Library (version 0.8.7). https://github.com/jacoco/jacoco.

Hoang Lam Nguyen and Lars Grunske. 2022. BeDivFuzz: Integrating Behav-
ioral Diversity into Generator-Based Fuzzing. In Proceedings of the 44th Inter-
national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 249-261.
https://doi.org/10.1145/3510003.3510182

Oracle Corporation. 2023. OpenJDK Java Class Library (version 11.0.19). https:
//openjdk.java.net/.

Oracle Corporation. 2023. Oracle Java Bug Database JDK-8309911. https://bugs.
java.com/bugdatabase/view_bug?bug_id=JDK-8309911.

Oracle Corporation. 2023. Oracle Java Bug Database JDK-8309914. https://bugs.
java.com/bugdatabase/view_bug?bug_id=JDK-8309914.

Oracle Corporation. 2023. Oracle Java Bug Database JDK-8309915. https://bugs.
java.com/bugdatabase/view_bug?bug_id=JDK-8309915.

0OSS-Fuzz Contributors. 2023. OSS-Fuzz. https://github.com/google/oss-fuzz.
OW?2 Consortium. 2023. ASM (version 9.1). https://asm.ow2.io/.

Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-Guided
Property-Based Testing in Java. In Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 398-401.
https://doi.org/10.1145/3293882.3339002

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (Beijing, China)
(ISSTA 2019). Association for Computing Machinery, New York, NY, USA, 329-340.
https://doi.org/10.1145/3293882.3330576

V. Pham, M. Bohme, A. E. Santosa, A. Caciulescu, and A. Roychoudhury. 2021.
Smart Greybox Fuzzing. IEEE Transactions on Software Engineering 47, 09 (sep
2021), 1980-1997. https://doi.org/10.1109/TSE.2019.2941681

Giinther R. Raidl and Jens Gottlieb. 2005. Empirical Analysis of Locality, Her-
itability and Heuristic Bias in Evolutionary Algorithms: A Case Study for the
Multidimensional Knapsack Problem. Evolutionary Computation 13, 4 (12 2005),
441-475. https://doi.org/10.1162/106365605774666886

Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020. Quickly
Generating Diverse Valid Test Inputs with Reinforcement Learning. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE °20). Association for Computing Machinery, New York, NY,
USA, 1410-1421. https://doi.org/10.1145/3377811.3380399

Rohan Padhye and JQF Contributors. 2023. jqf-examples (version 2.0). https:
//central.sonatype.com/artifact/edu.berkeley.cs.jqf/jqf-examples/2.0.

Franz Rothlauf. 2006. Representations for Genetic and Evolutionary Algorithms.
Springer-Verlag, Berlin, Heidelberg.

Prashast Srivastava and Mathias Payer. 2021. Gramatron: Effective Grammar-
Aware Fuzzing. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021). Association for
Computing Machinery, New York, NY, USA, 244-256. https://doi.org/10.1145/
3460319.3464814

Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement
of the "CL" Common Language Effect Size Statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics 25, 2 (2000), 101-132. http:
/[www.jstor.org/stable/1165329

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In Proceedings of the 41st International Conference on
Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 724-735.
https://doi.org/10.1109/ICSE.2019.00081

Richard A. Watson and Thomas Jansen. 2007. A Building-Block Royal Road
Where Crossover is Provably Essential. In Proceedings of the 9th Annual Con-
ference on Genetic and Evolutionary Computation (London, England) (GECCO
’07). Association for Computing Machinery, New York, NY, USA, 1452-1459.
https://doi.org/10.1145/1276958.1277224

Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu Zhang, and Bin Liang.
2019. SLF: Fuzzing without Valid Seed Inputs. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 712-723. https://doi.org/10.1109/
ICSE.2019.00080

Wei You, Xueqiang Wang, Shiging Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery. In 2019 IEEE Symposium on Security and
Privacy (SP). 769-786. https://doi.org/10.1109/SP.2019.00057

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://github.com/google/closure-compiler/issues/3593
https://github.com/google/closure-compiler/issues/3593
https://github.com/google/closure-compiler/issues/4096
https://github.com/google/closure-compiler/issues/4096
https://github.com/google/closure-compiler
https://github.com/google/closure-compiler
https://doi.org/10.1162/106365600568220
https://doi.org/10.1162/106365600568220
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://doi.org/10.6084/m9.figshare.24932631.v1
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3510003.3510628
https://doi.org/10.1145/3360607
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1145/3395363.3397348
https://doi.org/10.1145/3395363.3397348
https://github.com/mozilla/rhino/issues/397
https://github.com/mozilla/rhino/issues/397
https://github.com/mozilla/rhino/issues/405
https://github.com/mozilla/rhino/issues/405
https://github.com/mozilla/rhino/issues/406
https://github.com/mozilla/rhino/issues/406
https://github.com/mozilla/rhino/issues/409
https://github.com/mozilla/rhino/issues/409
https://github.com/mozilla/rhino/issues/1337
https://github.com/mozilla/rhino/issues/1337
https://github.com/mozilla/rhino
https://github.com/mozilla/rhino
https://doi.org/10.1145/3468264.3473932
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/jacoco/jacoco
https://doi.org/10.1145/3510003.3510182
https://openjdk.java.net/
https://openjdk.java.net/
https://bugs.java.com/bugdatabase/view_bug?bug_id=JDK-8309911
https://bugs.java.com/bugdatabase/view_bug?bug_id=JDK-8309911
https://bugs.java.com/bugdatabase/view_bug?bug_id=JDK-8309914
https://bugs.java.com/bugdatabase/view_bug?bug_id=JDK-8309914
https://bugs.java.com/bugdatabase/view_bug?bug_id=JDK-8309915
https://bugs.java.com/bugdatabase/view_bug?bug_id=JDK-8309915
https://github.com/google/oss-fuzz
https://asm.ow2.io/
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1162/106365605774666886
https://doi.org/10.1145/3377811.3380399
https://central.sonatype.com/artifact/edu.berkeley.cs.jqf/jqf-examples/2.0
https://central.sonatype.com/artifact/edu.berkeley.cs.jqf/jqf-examples/2.0
https://doi.org/10.1145/3460319.3464814
https://doi.org/10.1145/3460319.3464814
http://www.jstor.org/stable/1165329
http://www.jstor.org/stable/1165329
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1145/1276958.1277224
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/SP.2019.00057

	Abstract
	1 Introduction
	2 Background
	2.1 Evolutionary Fuzzing
	2.2 Crossover
	2.3 Parametric Fuzzing

	3 Approach
	3.1 Parametric Call Tree
	3.2 Linked Crossover

	4 Implementation
	5 Limitations
	6 Evaluation
	6.1 Methodology
	6.2 RQ1: Heritability
	6.3 RQ2: Coverage
	6.4 RQ3: Defects
	6.5 Threats to Validity

	7 Related Work
	8 Conclusion
	References

