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ABSTRACT

As technical computing software, such as MATLAB and SciPy, has
gained popularity, ecosystems of interdependent software solu-
tions and communities have formed around these technologies.
The development and maintenance of these technical computing
ecosystems requires expertise in both software engineering and
the underlying technical domain. The inherently interdisciplinary
nature of these ecosystems presents unique challenges and oppor-
tunities that shape software development practices.

Proof assistants, a type of technical computing software, aid
users in the creation of formal proofs. In order to examine the in-
fluence of the underlying technical domain — mathematics — on
the development of proof assistant ecosystems, we mined partici-
pant activity data from the code repositories and social channels of
three popular proof assistants: Lean, Coq, Isabelle. Despite having a
shared technical domain, we found little cross-pollination between
contributors to the proof assistants. Additionally, we found that
most long-term developers focused solely on technical work and did
not participate in official social channels. We also found that proof
assistant developers specialized into technical subfields. However,
the proportion of specialists varied between ecosystems. We did not
find evidence that these specialties contributed to fractures within
the ecosystems. We discuss the implications of these results on the
long-term health and sustainability of proof assistant ecosystems.
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1 INTRODUCTION

Technical computing uses computer systems to analyze and solve
mathematical, scientific, and engineering problems. Due to its flex-
ibility, efficiency, and efficacy, technical computing software has
been widely adopted for a variety of applications. For instance, MAT-
LAB, a commercial programming language and environment for
numerical computing, had 5 million users worldwide as of 2023 [47];
SciPy [83], an open-source scientific computing library for Python,
was downloaded from the Python Package Index (PyPi) over 67
million of times in the month of October 2023 alone [60]; and Sage-
Math, an open-source computer algebra system, has over 700 stars
on GitHub as of November 2023 [74]. Diverse communities have
developed around technical computing platforms and built webs
of interdependent projects that rely upon the platform. These soft-
ware ecosystems attract participants from a diverse array of techni-
cal backgrounds, such as computer science, software engineering,
mathematics, and statistics.

Due to their decentralized nature, open source ecosystems are
prone to fragmentation [87]. This fragmentation may hinder col-
laboration and harm the long-term sustainability of an ecosys-
tem [61, 87, 90]. In addition to traditional sources for fragmentation,
technical computing ecosystems may also fragment due to divisions
in the underlying technical domain. An effective ecosystem should
ideally bridge these divisions and unify the community while still
recognizing the unique expertise and experiences of participants.
Therefore, it is important to understand the role that technical and
non-technical divisions play in technical computing ecosystems to
inform platform design, ensure long-term ecosystem sustainability,
and better support the needs of these communities.

In addition to fragmentation, the properties of the underlying
technical domain may also influence participant recruitment, on-
boarding, and retention. Prior work has explored the impact of
contributor roles [38, 48], contribution guidelines [69], communi-
cation channels [65, 70], and developer motivations [25, 38] on the
software engineering process for both technical and non-technical
software. These studies have provided actionable insights to help
ecosystems to be more sustainable [22], engaging [25, 38], and
understandable to new users [29].

However, these works have not considered the impact of domain
expertise on participation in a software ecosystem. For example, a
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classic model of open source participation, the “onion model” theo-
rizes that participants progress from peripheral, less-technical roles
to critical, highly technical roles over their tenure [89]. However,
within the context of an ecosystem of projects, Jergensen et al. [35]
found that participants in the GNOME ecosystem did not follow this
model, and migrated between projects within the ecosystem with
ease. Peeling back the layers further, Pinto et al. [58] found that
popular projects have many “casual committers” who make small,
one-off “drive-by commits” [57]. However, it is not clear whether
these findings translate to technical computing ecosystems in which
coding and non-coding roles may still require technical expertise
from the underlying technical domain. Understanding contribution
patterns and models to technical computing ecosystems will shed
light on the role of domain expertise in open source.

Proof assistants, also referred to as interactive theorem provers,
are a type of technical computing software that support the for-
malization of mathematics by allowing users to define mathemati-
cal objects and prove quantitative statements about them through
code [26, 64]. Users incrementally guide the proof assistant through
a proof. Each step of the proof is verified by the proof assistant
with respect to a predefined logic or type theory. The mathematical
expressivity of proof assistants has garnered attention from a multi-
tude of technical communities. Computer scientists have used them
to verify specifications and properties of safety-critical hardware
and software [27, 37, 40, 88]. Logicians have used them to verify
epistemic logics and ontological arguments [7, 8, 53, 62]. Mathemati-
cians have used them to formalize complex arguments [28, 63, 82]
and investigate the foundations of mathematics [16, 30, 59].

This paper presents a case study of three proof assistant ecosys-
tems — Lean, Coq, and Isabelle — to better understand technical
computing ecosystems. While these three ecosystems each have
common goals, they have different histories and contribution mod-
els, creating a rich landscape to study. We mined participant activity
data from code repositories and social channels to investigate the
following questions:

RQ1: Does a shared technical domain facilitate cross pollination
between different proof assistant ecosystems?

RQ2: How common are short-term contributors? What are the
paths to long-term contribution in proof assistant ecosystems?
RQ3: How does the development of the proof assistant and its
math libraries impact theorem proving in the proof assistant’s

ecosystem?

RQ4: Do participants in proof assistant ecosystems specialize in
technical subfields? Does this specialization lead to fragmenta-
tion?

We contextualize our findings in prior studies of open-source
ecosystems. Overall, we find that the proof assistant communities
are effective at retaining contributors, and core developers tend
to have expertise in multiple technical subdomains. Our results
suggest multiple new and interesting directions for future research.

2 BACKGROUND

Proof assistants are interactive software tools used to verify and
reason about mathematics. Although other names have been used
in the literature to refer to these tools [9, 52], for the remainder
of this work, we will use the term proof assistant to refer to them.
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Unlike automated theorem provers, proof assistants do not prove
theorems fully automatically, but aid users in the development of
proofs [52]. To assist users in proof development, proof assistants
often employ automated methods, such as decision procedures and
term rewriting, to assist in reasoning. Additionally, a proof assistant
may offer an integrated design environment (IDE) to help organize
and compact proof-relevant information.

Proof assistants are also often co-developed with a library of
formalized proofs, which we refer to as a math library [2, 44, 77)].
The development of these math libraries typically requires expertise
not only in the proof assistant, but also in mathematics. These
libraries are often interdependent, bringing together developers
from diverse backgrounds into a shared community for developing
and maintaining the libraries and the proof assistant itself [2, 44].
The ecosystem encompasses end-users who write proofs, along with
the developers of the shared math libraries and proof assistants and
is rich with opportunities for collaboration and interaction [12, 80].
The shared technical domain may even invite collaboration between
users and developers of different proof assistants. Therefore, we use
the term broader proof assistant community to refer to participants
in any proof assistant ecosystem.

We studied three popular proof assistant ecosystems: Lean, Cogq,
and Isabelle. Each of these proof assistants has a long history of
research-supported development for the proof assistant itself and
its math library. These histories are well-documented and easily
accessible on GitHub. However, the community practices and orga-
nization of these ecosystems differ.

Lean is an open-source programming language and proof assis-
tant initially developed by Microsoft Research in 2013 [20]. In 2017,
Lean 3 [17] was released and soon after, much of the mathematics
functionality was refactored from the main Lean repository into a
centralized, user-maintained mathematics library: mathlib [44, 45].
Members of the Lean community primarily communicate on GitHub
and on the Lean Zulip chat [44]. In early 2020, the official Lean 3
repository was archived in preparation for the first full release of
Lean 4 [18] in 2021 [17]. However, the Lean community has con-
tinued to develop and maintain a community fork of Lean 3 [19],
with the most recent version (3.51.1) published in May 2023. This
fork has been endorsed by the original Lean 3 repository as of July
2023 for reporting bugs and bugfixes [17]. We study Lean 3, as it
remains the most popular version of Lean.

Development is heavily centralized on two repositories: Lean
itself and mathlib, with detailed contribution guidelines for both
projects integrated into GitHub. Their tutorial resources attempt to
lower the barrier to entry by introducing theorem proving in Lean
as akin to a game. Lean accepts contributions in the form of small
bug fixes and chores through pull requests [19]. However, imple-
menting a feature or modifying the system must be approved by the
developers first [19]. mathlib has detailed contribution guidelines
for its pull request system, including a style guide, naming con-
ventions, and documentation guidelines. There are many tutorials
on Lean, including the textbook-style Theorem Proving in Lean [4],
which assumes mathematical maturity, and the Natural Number
Game [13], an interactive walk-through of features in Lean which
assumes only a familiarity with proofs.
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Coq [73]! is an open-source proof assistant, initially developed
at the National Institute for Research in Digital Science and Technol-
ogy (INRIA) in France [33]. Coq is significantly older than Lean; the
first implementation of Coq (which was then called CoC for “Calcu-
lus of Constructions”) was released in 1984 [33]. Unlike Lean, Coq
does not have a centralized mathematics library [2, 39]. Instead,
Coq’s mathematics library is split into hundreds of repositories
that extend the Coq platform. The recommended installation dis-
tribution for Coq, the Coq Platform, includes a selection of these
external packages [34]. Coq community members communicate via
the official Coq mailing list, the cog-club [32].

Coq is centralized in one repository, with detailed contribution
guidelines. However, it lacks a centralized proofs repository like
mathlib, and rather follows a standard package index-based listing
of different contributed proofs with a spectrum of contribution
guidelines. Its tutorial resources include a wealth of textbooks and
associated lectures. The guidelines for contributing to Coq itself are
very detailed, with an outline of contribution for both issues and
code changes [73]. The fractured nature of Coq’s math library im-
plies that each repository has different contribution practices. Sev-
eral textbooks serve as lengthy tutorials in Coq, such as Coq’Art [9],
Programs and Proofs [66], and Mathematical Components [43], all
assuming general familiarity with proofs and programming.

Isabelle was originally developed by researchers at the Univer-
sity of Cambridge and Technical University of Munich and first
released in 1986 [56, 76]. Isabelle’s Archive of Formal Proofs [77]
(AFP) is a curated collection of system extensions, examples, and
proofs checked in Isabelle. There are two official mailing lists for
Isabelle: isabelle-dev for developers and isabelle-users for users [76].

Contributing to both Isabelle and the AFP is not via GitHub,
but by submitting changes and bug reports to developers through
the mailing list [76] or a submission link on the AFP website [77].
Isabelle and the AFP have centralized development, but the contri-
bution model is done behind closed doors, as it follows a single-blind
review process. Thus, contribution information is not always re-
trievable. Its tutorial resources follow similarly to Coq [76], with
textbooks and textbook-style documentation [54].

3 METHODOLOGY

Our overall goal is to study the characteristics of contributors to
these ecosystems. We first provide definitions for the terms that
we use to classify users and developers throughout our analysis
(Section 3.1). Then, we describe our research questions and our pro-
cess for answering them (Section 3.2). Finally, we first describe our
repository mining process and dataset construction (Section 3.3).

3.1 Definitions of Terms

Within the broad field of proof assistants, there are distinct subfields
of mathematics that different users might specialize in. We define a
subject area as a subfield of the community’s expertise(s) that is
generally agreed upon by the end user audience. Table 1 lists the
subject areas that we defined based on existing common ontology
in the organizational structure within the math libraries, as well as
discussions within mathematics [6, 75]. We first identify three major

LAt time of writing, there has been an ongoing effort to re-name the project, and the
likely new name is “Rocq”, but this change has not yet been finalized [71].
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Table 1: Subject Areas. For each subject area, we give a brief
description of the type of work included in that subject area.

Subject Area  Description

Algebra Polynomials, groups, rings, fields, etc., and their
applications

Analysis Continuous functions and their extensions, such
as calculus

Geometry Shapes and surfaces. We include topology in this

subject area

Logic Formal reasoning, languages (automata), and
meta-reasoning thereof

Data structures Organization and manipulation of data

Platform Language features, extensions for automated
reasoning, and tooling

Metatheorems Reasoning about the proof assistant itself or its
underlying logical theory

Other Work not belonging in any of the above subject
areas

subject areas of mathematics: Algebra, Analysis, and Geometry. We
then identify Logic, which has a presence in both mathematics
and theoretical computer science. Next, we identify three subject
areas particular to proof assistant development: Data structures,
Platform development, and Metatheorems. Code that does not a
priori belong to any identified subject area but is still exposed to
users is categorized into Other.

A specialist is a developer whose majority of code activity is
in a particular subject area (excluding the “Other” area). We only
considered developers with at least three code contributions within
the ecosystem when determining specialists. We identify core and
peripheral developers. Following prior work, a core developer is a
leader in the community and often participates the most through
code and discussion over an extended period of time [36]. Peripheral
developers are often involved in smaller bug fixes or enhancements,
and have a shortened involvement period [36]. We identified core
developers through a counting metric on the number of direct
commits to the main or master branch of the repository. The top
20% with respect to this counting metric were classified as core
developers, and the rest as peripheral, following similar counts
following the Zipf distribution in prior work [21, 36].

3.2 Research Questions

3.2.1 RQI: Does a shared technical domain facilitate cross-pollination
between different proof assistants? To what technical domains do

such developers contribute code to? Do core and peripheral de-
velopers contribute differently to multiple communities? These

questions can reveal if proof assistants have a shared community

of developers and users that share strategies between communities,
or if they are distinct. Our data collection process (Section 3.3) in-
cludes a disambiguation step to match users across platforms and

communities.

3.2.2 RQ2: What are the paths to long-term contribution in proof
assistant ecosystems? Answering this question will allow us to un-
derstand more about the role of technical expertise in on-boarding
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to open-source development. We assign contributors tenure cate-
gories based on how long they have contributed to the community.
We consider both social and technical contributions when deter-
mining tenure, and define the following categories:
o New Member: first contribution was within the last three months,
o One Contribution: has made only one contribution,

e One Day has made more than one contribution to the commu-
nity, but all contributions were made within a single day,

e Short-Term: has made more than one contribution to the com-
munity, but all within the span of three months,

o Long-Term:has made at least one contribution to the community
in a three-month window for multiple three-month windows.

We selected three-month windows to characterize developer tenure
in accordance with prior work [36].

Before characterizing the paths that long-term developers take
within each community, we first examine the proportion of short-
term contributors in each community. We then compare the pres-
ence of short-term contributors in proof assistant ecosystems to
those in other open-source ecosystems to contextualize the activi-
ties of long-term develoeprs in the onion model.

We then further study the evolution of Long-Term developers
roles, using the “onion model” of Open Source development [35, 89].
We determined the role of the developer in the community by
labeling each three-month window in the developers tenure as
either social, technical, or both. We then characterized users’ paths
to contribution to the open-source ecosystems by several paths
outlined in this model [35]:

o socio-technical path: when a user first contributes to a commu-
nication channel, such as a mailing list, then contributes code
to the repository as a commit, pull request, or bug report,

o accelerated path: when a user first contributes to a communica-
tion channel, then contributes to code to the repository within
their first three months of contributing,

o technical-social path: when a user first contributes to a reposi-
tory, then a communication channel,

e technical path: when a user only contributes to the repository.

We use Kaplan-Meier survival plots to visualize retention of con-
tributors by initial contribution path. A user is defined as actively
contributing if they had at least one action in the ecosystem in the
last 180 days, following the example of Milewicz, et al. [48].

3.2.3  RQ3: How does the development of the proof assistant and
its math libraries impact theorem proving in the proof assistant’s
ecosystem? As described in Section 3.1, each proof assistant can be
thought of as a core platform and a supporting set of mathematics
libraries. Hence, we study: what is the co-development (or lack
thereof) of a proof assistant and its surrounding libraries?

We characterize the overall ecosystem capabilities by computing
the number of theorems proven from Wiedijk [85]’s “100 Theorems
Benchmark.” One approach to answer this question might examine
the cumulative number of theorems proven over time, and the cumu-
lative volume of code changes. However, this methodology is likely
to produce spurious correlations, because these cumulative values
would continuously increase over time [1, 67]. Instead, we examine
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the amount of development activity and theorems proven in 90-
day rolling windows. We selected 90-day windows in accordance
with prior work [36]. We use the number of commits as a proxy
for development activity, as metrics based on lines of code may be
misleading due to differences in the programming languages and
styles used by the proof assistants.

For each ecosystem, we calculate the correlation between the
number of commits made to its main repository and to its math li-
brary compared to the number of theorems from the “100 Theorems”
list proven in a 90-day period. We report the Pearson coefficient,
which tests for a linear correlation, and Kendall’s tau, which tests
for a monotonic correlation [50].

3.24 RQ4: Do participants in proof assist ecosystems specialize in
technical subfields? Does this specialization lead to fragmentation?
In our context, mathematics, there already exist generally agreed-
upon boundaries between subjects [6, 75], as listed in 3.1. This
question asks whether we observe such divisions in the developer
community as well, as a way to discretize the interdisciplinarity of
mathematical software.

For each proof assistant, we first identify the subset of the subject
areas that a user has made code contributions to. We define a code
contribution as a commit to the primary branch (e.g. main ormaster)
or a pull request that contains code. Next, we identify the most
popular subsets that users have contributed to for a given ecosystem.
Large subsets or “Other” being popular indicates that users and
developers tend to contribute to multiple areas over time. We also
compare volume of contribution to each subject area in a binary
way, identifying the count of developers who contribute to any
two subject areas, to contextualize any entanglement, if any, of our
subject areas.

For a finer-grained analysis of developer specialization, we iden-
tified developers that specialized in different subject areas for each
ecosystem. We defined a developer as being a specialist in a par-
ticular subject area for an ecosystem if a majority of their code
contributions within the ecosystem were associated with only that
subject area. A direct comparison with the popular subject area
subsets with the complete user base allows us to visualize potential
differences in contribution practice between developers and users.

3.3 Data Collection and Processing

For each of the three proof assistants that we studied, we col-
lected data from the following sources: the proof assistant’s primary
GitHub repository, the math library for the proof assistant, and
the official mailing lists or forums for the proof assistant. We also
analyzed Wiedijk [85]’s “100 Theorems Benchmark”.

3.3.1 Data Sources. For Lean, we collected data from the main
repository, leanprover-community/lean [19]; the math library,
leanprover/mathlib [45]; and the Zulip Chat. For Isabelle, we
collected data from the GitHub mirror of the main Isabelle repos-
itory [79]; the GitHub mirror of the Archive of Formal Proofs,
isabelle-prover/mirror-afp-devel [78]; and the isabelle-
users@cl.cam.ac.uk and isabelle-dev@in. tum.de mailing lists.
For Coq, we studied the main repository, coq/coq [73] repository,
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Isabelle Isabelle
Coq Lean Coq Lean
(a) Overall (b) GitHub

MSR ’24, April 15-16, 2024, Lisbon, Portugal

Isabelle Isabelle

s V- V4
o \/

Coq Lean Coq Lean

(c) Core (d) Core GitHub

Figure 1: Contributor Overlap. Overall (a) includes contributions via GitHub and by mailing list/chat, while GitHub (b) only includes
contributors who participated in that project’s GitHub activities. Core (c) shows all developers who were classified as a “core” developer of at
least one platform, and Core GitHub (d) shows only the GitHub contributions of those core developers.

the packages listed on the Coq Package Index maintained by IN-
RIA [31], and the cog-club mailing list. We collected all data avail-
able on May 1%, 2023.

For each GitHub repository, we collected information about the
commits, issues, and pull requests including the size and source of
the contribution, the date it was made, and its authors. For each
mailing list or forum, we collected information concerning dates,
message size, and message author. We then constructed a cross-
community corpus of member activities by combining the data
from all three proof assistants by user.

We disambiguated community members and matched them across
ecosystems using name, email, and GitHub username data. Two
accounts with the same GitHub username or email address were
considered to belong to the same community member. We also
applied the disambiguation heuristic described by Oliva et al. [55]
and Wiese et al. [86] by assuming that community members used
the same name in the configuration of their different email clients.
This heuristic groups email addresses if they have the same sender’s
name. We extended this assumption to include the use of the same
name configuration between email and GitHub accounts.

Wiedijk [85] maintains a list of 100 well-known theorems and a
record of formalizations for each listed theorem by notable proof as-
sistant communities, used as a benchmark for proof assistants [84].
For each recorded formalization, Wiedijk [85] includes a statement
on the formalization made by the proof assistant community respon-
sible for the formalization. We used these statements to locate the
source code repositories of formalizations made by the Isabelle, Coq,
and Lean communities. If a repository was hosted on GitHub, we
retrieved data for the repository as described above. Some reposito-
ries for Isabelle were not hosted on GitHub; we were able to collect
data on these repositories from the Archive of Formal Proofs [77].

3.3.2 Data Labeling. We labeled code files by subject area. Coq,
Lean, and Isabelle developers categorize their math library files
based on the subfield of mathematics or computer science with
which that code is most associated. For Coq developers, these cate-
gorizations are explicitly listed for each entry of the Coq package
index [31]. For Lean and Isabelle, this categorization is reflected
in the organization of repositories. For example, the files located
in the src/geometry directory of the mathlib repository [45] are
associated with the mathematical subfield of “Geometry”.

We mapped these developer-identified categories to the subject
areas listed in Table 1 based on the name and description of the
category. Then, we extended this mapping to label source code
files in the primary GitHub repository and the math library of each
proof assistant with their associated subject areas. Source code
files that were not associated with any of the six subject areas
listed in Table 1 were assigned the “Other” subject area. For Coq,
packages that did not specify a category in their Coq package
index entry were manually assigned a subject area based on the
description of the package on the package index or in the package’s
associated source repository. For Isabelle, subdirectories of Isabelle’s
src directory were similarly manually checked. One author mapped
the categories for each proof assistant to the subject areas and
assigned subject areas to packages and directories that did not have
an explicit category.

4 RESULTS

4.1 RQ1: Does a shared technical domain
facilitate cross-pollination between
different proof assistants?

Figure la shows the contributor overlap between communities.
We observe in Figure 1a that, comparatively, the overlap between
the different communities is somewhat small, with the biggest in-
tersection being between Coq and Isabelle. Specifically: 15.45% of
Coq contributors also contributed to Isabelle in some form and
22.44% of Isabelle contributors also contributed to Coq in some
form. One explanation for the greater overlap between these two
communities than with Lean is simply based on age (as discussed
in Section 2): given their longer histories, there have been more op-
portunities for their contributors to engage with these ecosystems.
However, it is worthwhile to note that the number of contributors
to Lean (2,546) was somewhat larger than the community for Is-
abelle (2,170), despite Isabelle being significantly older. The Coq
community was largest overall, at 3,152 contributors. These overall
contributor counts (shown in Figure 1a) include contributions to
mailing lists. Therefore, the number of contributors to the Coq
community may be larger due to the popularity of its mailing list
as a forum for discussion of broader proof assistant topics. Some
threads in the Coq mailing list draw significant participation, such
as an April 2021 thread about renaming the project and re-drawing
the logo, which even received some media coverage [15].
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When filtering out mailing list contributions to purely examine
GitHub contributions in Figure 1b, we observe first that the number
of GitHub contributors differs from the size of the full community
by an order of magnitude, implying that most community mem-
bers active on an official communication channel do not directly
participate in ecosystem development. This stems most likely from
a confluence of reasons. One factor is the high barrier of entry to
code contribution due to proof assistants being highly technical
software. Another factor may be the gap between end user and
developer: end users simply do not need or want to contribute code.
However, we still see that the overall trends in terms of the num-
ber of contributors remain similar: Coq had the most contributors
(967), followed by Lean (426), and Isabelle (201). While we found
the greatest overlap between Coq and Isabelle when considering
all contributions, examining only the GitHub contributions reveals
that the greatest overlap in GitHub contributors was between Coq
and Lean (sharing 19 developers). Comparatively, just 0.62% of Coq
developers made GitHub contributions to Isabelle and 2.99% of
Isabelle developers contributed to Coq — a significant reduction
compared to the ratios that include mailing list contributions. We
postulate that the driving force behind this difference is that Coq
and Lean are both rooted in the same type theory (the Calculus
of Inductive Constructions) [4, 9] and are thus similar in language
design, increasing the ease of learning both systems.

When we consider all contributions of only core developers,
the intersections are proportionally greater to the size of the sub-
community population, as seen in Figure 1c. However, in Figure 1b,
we see that a relatively small number of core developers made
GitHub contributions to multiple ecosystems. But, the proportion
of core developers that made GitHub contributions to multiple
ecosystems was greater than that of all developers (Figure 1b):
4.40% of core developers made GitHub contributions to more than
one ecosystem compared to 1.66% of all developers. This implies
that there was some cross-pollination at the core-developer level.

We examined the core developers that made contributions to
multiple ecosystems’ via GitHub more closely to better characterize
their activities. None of those eleven developers were core devel-
opers in more than one ecosystem. Six of the eleven developers
were specialists in an ecosystem that they contributed to. Two of
these six developers were specialists for more than one ecosystem.
These two developers were also the two that made GitHub contri-
butions to all three ecosystems. Both of these developers were core
developers for Lean with a specialty in “Algebra” and peripheral
developers for Coq and Isabelle. One of these developers is also a
specialist in “Algebra” for Isabelle, and the other is a specialist in
“Data Structures” for Coq.

Comparing the size of the overlapping populations between
proof assistant ecosystems and the GNOME ecosystem studied by
Jergensen et al. [35], we found far fewer developers contributing to
multiple proof assistants. This may be unsurprising as GNOME is
a single ecosystem with centralized management, and each proof
assistant is its own ecosystem within shared technical domain.
However, it is nonetheless interesting to explore the characteristics
of the developers who contribute to multiple communities.
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Table 2: Developer Tenures. Tenure categories are described in
Section 3.2.2.

Coq Lean Isabelle
# % # %o # %
New Member 33 3.41% 13 3.05% 2 1.00%
One Contribution 88 9.10% 24 5.63% 28 13.93%
One Day 156 16.13% 40  9.39% 9  448%
Short-Term 171 17.68% 143 33.57% 18 8.96%
Long-Term 519 53.67% 206 48.36% 144 71.64%

Table 3: Paths to Long-Term Contribution. Definitions of path-
ways appear in Section 3.2.2.

Coq Lean Isabelle
# % # Y% # %
Social-technical 118 22.74% 4 1.94% 35 24.31%
Accelerated 22 4.24% 5 243% 4 2.78%
Technical-social 56 10.79% 13 6.31% 16 11.11%
Technical 323 62.24% 184 89.32% 89 61.81%

4.2 RQ2: What are the paths to long-term
contribution in proof assistant ecosystems?

From Figure 1a and Figure 1b, we observe that a majority ecosys-
tem members only contribute using social channels. We found
that 82.24% of the 7,242 ecosystem members participated in social
channels and 78.38% participated only in social channels. For our
analysis of long-term contribution, we exclude members that only
participated in social channels and focus on the 21.62% of members
that contributed to the technical media, i.e., developers.

Table 2 shows the number of developers in each ecosystem by
tenure, using the terms defined in Section 3.2.2. The percentage of
very short-term, or casual, contributors (who made only a single
contribution or multiple within a single day) is quite small: 25.23%
for Coq, 15.02% for Lean, and 18.41% for Isabelle. We observe that a
majority of developers are long-term contributors in each ecosys-
tem; this observation is most pronounced in Isabelle. In contrast,
Pinto et al. [58] found that 49% of the casual contributors to 250
popular projects across GitHub were short-term contributors. One
interpretation of this tendency away from short-term contribution
may be that the technical barriers to entry in these ecosystems
are so high that it is difficult to make a “casual contribution” [68].
However, regardless of the barriers to the first contribution, this
result strongly suggests that all three ecosystems are able to retain
new contributors beyond their first engagement.

To gain further insights into the activities of long-term devel-
opers, we apply the “onion model” of open-source software de-
velopment [35, 89] to characterize users’ paths to contribution.
Table 3 shows the results of this analysis. We observe that, for all
three ecosystems, a majority of developers enter the community
through the technical path. We did not find evidence of the onion
model where participants progress from less to more technical
roles [35, 89]. Because the vast majority of ecosystem members
only contribute to one proof assistant, it is unlikely that the onion
model would be applicable to the broader proof assistant ecosystem
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Figure 2: Kaplan-Meier Contributor Survival Curves. Contributor survival probability by number of days active in the community
based on contribution type (technical or social and technical contributions) with 95% confidence interval.
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Figure 3: Number of Commits vs. Theorems Proven. For each ecosystem, we depicted the number of commits made to its main
repository (blue line), the number of commits made to its math library (green line), the number of theorems from the “100 Theorems” list

proven (orange line) in the 90-day period before each point in time.

as it was in the Jergensen et al. [35]’s “onion-patch model”. Similar
to Jergensen et al. [35], we found that the majority of the studied
contributors only participated in technical media (e.g., source code,
pull requests, and issues) and not to social channels, as shown in
Table 3. Considering that the proof assistant communities do not
follow the onion model, we can conclude that the social channels
are not the primary way that contributors become familiar with
these ecosystems and that there is some other mechanism at play.

Although a majority of long-term developers in each ecosystem
entered the community via a technical contribution and in many
cases did not contribute socially, we found that contribution to
social channels was still a significant factor in contributor retention.
As seen in Figure 2, developers who contributed to social channels
had longer tenures than those that did not. This might be because
contributors who engage with the social channels are more in-
vested in the community originally rather than the social channels
themselves being a factor in retention. We compare these survival
curves to those of developers of open-source utilities WikiMedia,
OpenStack, GlusterFS, Xen and CloudStack using results reported
by Lin et al. [41]. We find that, overall, the proof ecosystems retain

developers for far longer than these general-purpose projects. For
example: at 1,000 days the survival rate of proof assistant contribu-
tors was 25%-95%. However, for the other projects studied by Lin
et al. [41], the 1,000 day survival rate ranged between 5%-35%. How-
ever, when only considering the survival rates of contributors who
only contribute technically, 25%-40% at 1,000 days, the retention of
developers in proof assistant ecosystems is comparable to that of
the other projects studied by Lin et al. [41].

4.3 ROQ3: How does the development of the
proof assistant and its math libraries impact
theorem proving?

Figure 3 shows the number of commits to each proof assistant
and math library along with the number of theorems proven in
the “100 Theorems Benchmark.” To supplement this visualization,
we compute the Pearson correlation coefficient and Kendall’s tau
value, dividing the codebase into the proof assistant itself and its
corresponding math library, shown in Table 4.

The total number of theorems proven (Coq: 79, Isabelle: 80, Lean:
74) shows some variation by-ecosystem. Examining the plots, we
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Table 4: 100 Theorems Benchmark Correlations. Number of
Commits vs. Theorems Proven Correlations. For each ecosys-
tem, we list the Pearson correlation coefficient (r) and Kendall’s
tau value (1) between the number of commits made to its main
repository (Assistant) and to its math library (Library) compared
to the number of theorems from the “100 Theorems” list proven
in a 90-day period. The two-sided p-value (p) is provided for each
reported correlation.

Kendall Pearson

T p r P
Coq Library  0.172 1.92-10 ~* 0.135 2.22-10 ~2
Assistant  0.112 1.37-10 =2  0.095 1.06-10 ~!
Isabelle HiPTATY 0090 3.56-10 -2 0.161 2.17-10 73
Assistant  0.139 7.22-10 "¢ 0.101 5.42-10 ~2
Lean  Library — 0.606 2.50-10717  0.496 8.18-10 ~°

Assistant —0.433 1.84-10710 —0.538 2.44 .10 10

see a few interesting trends. Unlike Coq and Lean, Isabelle’s proof
assistant sees far more commits than its math library. This trend is
likely due to Isabelle’s contribution model, which requires contri-
butions to its math library to go through a rigorous review process,
and then merges in those contributions as single commits. Lean’s
growth reflects its release in 2018, after which point the primary de-
velopment focus was on the math library, and we subsequently see
a relatively rapid growth in theorems proven. Overall, we see the
most activity in the Coq ecosystem: the Coq math library saw over
1,500 commits per 90 day period since 2016, indicating a significant
effort on the part of contributors.

Examining the correlations in Table 4, we see generally weak
evidence of correlation between the commit volume in either the
proof assistant or the math library and the number of theorems
proven. However, in the case of Lean, we note a moderate correla-
tion (r = 0.61) between the growth in math library and theorems
proven. Except for the Pearson correlation coefficient between
the number of commits to the proof assistant and the number of
theorems proven in Coq and Isabelle, all other correlations are sta-
tistically significant (p < 0.05). Lean’s contribution model is rather
strict and does not allow anything beyond bug fixes without devel-
oper permission, unlike mathlib’s detailed but open pull request
policy. This has resulted in the steady growth of mathlib, as shown
by its strong correlation with the “100 Theorems Benchmark” in
Table 4, but not Lean, whose contribution requirements may be
stricter than that of Coq. This implies that a stable proof assistant
language as well as a clear delineation between the platform and
the math library may be beneficial to the development of a proof
assistant math library.

4.4 RQ4: Do participants in proof assistant
ecosystems specialize in technical subfields?

In Table 5, we list the most popular subsets of subject areas con-
tributed to by core and peripheral developers for each ecosystem.
In additional to subsets of the subject areas listed in Table ??, we
also include the subset “None”. The subset “None” indicates that
a majority of a developer’s contributions were not directly to the
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proof assistant or math library, but instead to other artifacts — such
as documentation, build files, and scripts in other languages that
the proof assistant is not reliant on. Overall, core developers tended
to contribute to more subject areas than peripheral contributors.
For each ecosystem, a large proportion of peripheral developers
only made contributions to the “Other” or “None” areas, as shown
by the existence of lone “Other” and “None” subsets in Table 5.

For Lean, peripheral developers often made at least one contribu-
tion to the “Algebra” subject area. For Coq, peripheral developers
predominantly contributed to the “Platform” and “Data Structures”
subject areas. For Isabelle, many peripheral developers contributed
only to the “Logic” subject area.

As shown in Figure 4a, developer specialties painted a similar
picture. In Coq, “Data Structures” and “Platform” had the most spe-
cialists. Whereas, “Algebra” and “Logic” had the most specialists for
Lean and Isabelle, respectively. We note that the scales vastly differ
due to the different total number of developers for each ecosystem.

As shown in Table 6, peripheral developers were more likely to
be specialists than core developers for Isabelle and Lean. However,
for Coq, a larger proportion of core developers were specialists
than peripheral developers even though Table 5a indicates that
core developers for Coq still contribute to a variety of subject areas.
The observations do not conflict, as even one code activity was
counted towards a subject area contribution, unlike the criterion for
specialists. On the other hand, only 8.11% of Isabelle core developers
were specialists, indicating that core developers of Isabelle rarely
focus their effort on a single subject area.

Overall, we found that, across all communities, division into tech-
nical subfields was most pronounced in peripheral developers, and
core developers instead took a “jack-of-all-trades” role, contributing
to multiple subfields. This indicates that the community of core
developers of proof assistant software are not fragmented along
technical specializations. Despite contributing to multiple subject
areas, we also found that many developers were still specialists.
The focuses of these specialists differed between the ecosystems.

5 DISCUSSION

We first observed through RQ1 that, despite having a shared tech-
nical domain, there was little cross-pollination between the proof
assistants. Overall, less than 8.26% of participants contributed to
more than one ecosystem. Although there is little cross-pollination
between proof assistants on official channels, it is possible that
outside collaborations (e.g. talking at conferences, unofficial social
channels) exist and facilitate information sharing. It is possible that
a lack of cross-pollination may result in duplicated efforts between
the proof assistant ecosystems [87]. However, it is also possible
that the different proof assistant ecosystems attract users with in-
terests in different subfields of mathematics. As we discussed in
Section 4.4, Coq specialists tended to focus on “Data Structures”
and “Platform”, Lean specialists tended to focus on “Algebra”, and
Isabelle specialists tended to focus on “Logic”. This suggests the
different ecosystems may be better suited to different subfields of
mathematics.

Even though overall cross-pollination was low, core developers
were more likely to contribute to multiple ecosystems; 16.40% of
the 250 core developers contributed to more than one ecosystem
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Table 5: Developer Subject Area Subsets. Definitions of subject areas and core vs peripheral developers appear in Section 3.1. We show
only the subsets with top five highest counts in each list.

(a) Coq Core Developers.

(b) Isabelle Core Developers.

(c) Lean Core Developers.

Subset Count Subset Count Subset Count
Algebra, Analysis, Data Structures, Geometry, 29 Algebra, Analysis, Data Structures, Geometry, 18 Algebra, Analysis, Data Structures, Geometry, 33
Logic, Other, Platform Logic, Metatheorems, Other, Platform Logic, Metatheorems, Other
Data Structures, Other, Platform 22 Algebra, Analysis, Data Structures, Geometry, 4 Algebra, Analysis, Data Structures, Geometry, 24
Data Structures, Platform 18 Logic, Metatheorems, Other Logic, Metatheorems, Other, Platform
Data Structures, Other 14 Algebra, Data Structures, Logic, Metatheorems, 3 Algebra, Analysis, Geometry, Logic, Other 2
Platform 12 Other, Platform Data Structures, Platform 2
Algebra, Analysis, Data Structures, Logic, 2 Algebra, Analysis, Geometry, Logic, Metatheo- 1
Metatheorems, Other, Platform rems, Other
Analysis, Data Structures, Logic, Metatheorems, 2

(d) Coq Peripheral Developers.

Other, Platform
(e) Isabelle Peripheral Developers.

(f) Lean Peripheral Developers.

Subset Count Subset Count Subset Count
None 228 Other 41 Other 61
Platform 134 None 16 Algebra, Analysis, Data Structures, Geometry, 42
Other 104 Logic 15 Logic, Metatheorems, Other
Data Structures 85 Data Structures, Other, Platform 10 Algebra 39
Data Structures, Other 69 Algebra 5 Algebra, Other 37
None 29
Core [M Peripheral
2
50
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Figure 4: Specialists by Subject Area. Each bar represents the number of specialists in a suubject area for a given ecosystem for core and
peripheral developers that exhibited specialization. No bar indicates that there were no specialists for that subject area in the community.

Table 6: Specialist Proportions. Specialist methodology is de-
scribed in Section 3.1.

Core Peripheral
# % # %
Coq 148 58.78% 485 56.08%
Isabelle 37 8.11% 106 29.25%
Lean 65 24.62% 302 39.40%

through social or technical channels. However, only 4.40% of core
developers made GitHub contributions to more than one ecosystem.
In general, there was more overlap between communities when
considering social contributions alongside technical contributions.
This suggests that proof assistant communities may still share
ideas and domain knowledge even if developers rarely make code
contributions to more than one ecosystem. A promising future
direction may be to survey the developers of these communities

to understand what drives cross-pollination, and how it can be
encouraged in the future, if at all.

We observed in RQ2 that, in general, contributors to proof assis-
tants and their math libraries join the ecosystem primarily through
technical contributions and do not follow the onion model [89].
This result is consistent with the findings of Jergensen et al. [35]
who examined contribution paths in the GNOME ecosystem, a non-
technical ecosystem. We also note that although participants who
contribute to the social channels have a longer tenure in the com-
munity than those who only contribute though technical media, a
majority of developers become long-term contributors regardless.
This suggests that the joining script for contributing to mathemati-
cal software follows some other pattern than that proposed by the
onion patch model.

Unofficial social channels that were not captured by our study
may help to attract and onboard proof assistant developers. As
proof assistants are end-user programming tools, socialization may
not begin with mailing lists or issues, but instead with broad engage-
ment with the software itself from users in pedagogical or research
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settings. There are likely many offline, unofficial, organic communi-
ties around these ecosystems that yield socialization. Incorporating
these interactions into the onion model may yield different results.
It would be interesting future work to study the barriers to entry
for these organic, unofficial communities; membership in certain
institutions or networks might make joining these communities
significantly easier.

We also observed that a majority of ecosystem members only
participated in social channels. These participants could have high-
domain expertise but limited programming background, or may
simply not need or want to contribute code to the project. This is
consistent with our finding that a majority of GitHub contributors
in each community were long-term participants, indicating that it
may be more difficult to make casual, short-term contributions to
these communities. Maintainers of proof assistants should therefore
take additional steps to assist with initial code contributions. For
instance, Tan et al. [72] found that expert involvement and men-
toring in “good first issues” increased the chance that newcomers
were able to successfully resolve the issues.

In RQ3, we observe that, even though the total number of theo-
rems from the “100 Theorems” list proven is comparable in all three
ecosystems, Lean is the youngest by a significant margin and also
has the most definitive boundary between the proof assistant and
the math library, which are stored in separate repositories [44, 45].
This suggests that a clear delineation between a proof assistant and
its math library is beneficial to library growth, as, in some sense,
proof assistant development is “left to the experts.” Having a stable
proof assistant language accelerates the proving of theorems rather
than stagnates it. The rate of proving theorems from the “100 Theo-
rems” list may also be affected by the implementation of the proof
assistant itself and the math library, as well as the agenda of the
developers in the ecosystem. However, the development of Lean
4 is a confounding factor, and it would be beneficial to redo this
study with new methodology incorporating Lean 4’s development
timeline and the current ongoing efforts to port mathlib to Lean 4.

In RQ4, we demonstrate that, surprisingly, fragmentation along
divisions in the field of mathematics was not present in core de-
velopers. Instead, many core developers contribute to a variety
of subject areas, even those that primarily contributed to a single
specialty. For peripheral developers, separations along divisions
in the field of mathematics were more pronounced. This may be
because peripheral developers contribute less code than core de-
velopers, and therefore have less of an opportunity to contribute
to multiple subject areas. This separation may also be a product of
differences in intention between core and peripheral developers. It
is possible that peripheral developers are predominately “end-user”
programmers who, as described by Ko et al. [38], “write programs
to support some goal in their own domains of expertise” opposed to
professional developers who are concerned with the development
and maintenance of the software itself. The intentions of proof
assistant developers is an interesting topic for further research.

We found that each proof assistant ecosystem had a different
most popular subject area for specialization. End-user math library
developers may be attracted to the proof assistant ecosystem that
best supports their subject area of interest. For example, users may
choose Lean if their focus is on algebra, or Coq if their focus is on
type theory, and Isabelle if their focus in on logic.
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5.1 Implications

Based on these findings, we explicitly call out several implications
for different audiences:

5.1.1 Implications for Community Leaders and Maintainers. Soft-
ware ecosystems like those that we studied have rich social chan-
nels in which community members engage with developers. How-
ever, we found far fewer community members participated in code-
related activities than in social activities. Hence, if maintainers
would like to grow the base of contributors to the codebase, there is
likely a large population of potential contributors. Existing strate-
gies such as "good first issues’ [69], mentoring [72], and accessible
contribution guidelines [72] may be effective in this context.
Through our comparison of the development history of the dif-
ferent proof assistant ecosystems, we found a clear benefit to estab-
lishing and maintaining a clear technical delineation between the
proof assistant and the math library. This design decision provides
a helpful layer of abstraction between the most domain-specific
aspects of automated theorem proving (i.e., the math library) and
the more general-purpose software (the theorem prover). This layer
of abstraction can make it easier for domain experts to contribute
code. In our case study, we found that this was accomplished by
storing the proof assistant and math library in separate repositories,
as is the case with Lean. This kind of abstraction could similarly be
applied to other highly technical domain-specific software.

5.1.2  Research Opportunities. While our research has yielded many
interesting insights about participation in proof assistant ecosys-
tems, our conclusions are inherently limited by our research meth-
ods. Specifically, by using only software repository mining ap-
proaches, we can only observe activities that occurred, and miss
out on developers’ motivations, perspectives, and offline activities.
However, based on our findings, we can frame many interesting
new research questions that we hope can be studied in the near
future, for example:

What drives cross-pollination between technical computing ecosys-
tems? Although developers in the broader proof assistant commu-
nity rarely contribute code in more than one ecosystem, commu-
nity members are more likely to contribute to multiple ecosystems
through social channels. What motivates this cross-pollination? Is
it beneficial to the broad proof assistant community? If so, how can
it be encouraged?

What are the effects of unofficial and/or offline social channels
on the joining script for technical computing ecosystems? We are
unaware of prior research studying the activities.

What are the effects of the differences in the development of
Lean 4 and Lean 3 on the resulting theorem proving software? This
study was conducted immediately prior to the adoption of mathlib4,
the Lean 4 math library. We did not consider the impact of Lean 4
development in our analysis. Studying the different versions of Lean
in particular would provide an effective case study of correlations
between development methodologies and software quality.

What are the intentions and backgrounds of core and peripheral
developers in proof assistant ecosystems? RQ4 found a difference
between what type of code was contributed by core and peripheral
developers and suggests that the difference in intention between
these groups should be further studied with interviews and surveys.
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5.2 Threats to Validity

Limitations in our methodology may pose threats to the validity
of our conclusions. While our classification of code files by subject
area was based on an existing ontology, the classification procedure
was manual, and could be subject to bias. We distinguished between
core and peripheral developers using counting-based metrics, which
while imperfect, have been shown by Joblin et al. [36] to be an ef-
fective choice. Although counting-based metrics for distinguishing
between core vs. peripheral developers perform well in general,
we could have explored other metrics including communication
channel-based counts and relational methods [36]. Our choice of
3 months for determining developer activity tenure was based on
Joblin et al. [36], and our mailing list disambiguation heuristic was
based on Oliva et al. [55] and Wiese et al. [86].

In order to analyze each contributor’s overall contributions, we
had to link email address and forum names with GitHub profiles.
We relied on a heuristic-based disambiguation approach used by
Oliva et al. [55]. In a ground-truth evaluation of six disambiguation
approaches to map contributors, Wiese et al. [86] found that Oliva
et al. [55]’s approach had the highest precision and recall. Nonethe-
less, Wiese et al. [86] report a median recall of 0.5, indicating that
some contributors may not be correctly linked between mailing
list and code contributions, or between ecosystems. Hence, our
results may under-report the number of contributors who were
active in multiple ecosystems. We may also over-count the number
of contributors in a single ecosystem, as a single contributor that
is active in multiple channels may not be de-duplicated. Future
work should conduct user studies to supplement our data-driven
conclusions about proof assistant communities.

We compared development activity across ecosystems by com-
puting the number of commits. This methodology is subject to
limitations based on the size of commits. An approach that mea-
sured activity based on lines of code could normalize this effect,
but introduces distortions as each ecosystem’s language impacts
the relative number of lines used to express the same concept.

Our case study of three proof assistant ecosystems provides
insights that could apply to other technical software, but we have
no information to suggest that they would generalize. Future work
should consider applying our analysis methods to other technical
open source ecosystems. Furthermore, it may be interesting to study
other proof assistants, including the newest release of Lean. As of
30 July 2023, activity on Lean 3’s mathlib has largely stopped as
all of it has been ported to Lean 4’s math library, mathlib4 [46].
As of 8 September 2023, Lean 4 received an official release and has
superseded development of Lean 3 [18]. Although all of our data
has been retrieved before these dates, this serves as an additional
confounding factor for future work to address.

6 RELATED WORK

Characterizing the roles of and boundaries between contributors
of open-source projects have been well-studied [51]. Role analysis
in non-technical software has been studied extensively in works
such as [5, 11, 23, 49]. Milewicz et al. [48] studied the affiliation of
developers of scientific software and found a majority were aca-
demically affiliated, with research staff more involved than junior
roles such as graduate students. We extend this methodology with

MSR ’24, April 15-16, 2024, Lisbon, Portugal

the definitions described in Section 3.2, and also look at the entire
community, including communication channels. A study by Downs
et al. [22] used focus groups to discuss and come to actionable
recommendations for scientific software, particularly in the earth
sciences. An older study by Carver et al. [14] similarly used surveys
to taxonomize the scientific software ecosystem. Neither of these
papers used any mining techniques. However, we did not elicit
feedback from developers or users of mathematical software, and
we leave this to future work.

Proof assistants in particular have been studied through a soft-
ware engineering lens due to their high technical barrier of entry
and the wealth of documentation and articles surrounding the
ecosystems. A general historical overview of proof assistants can
be found in [26, 64]. Blanchette et al. [10] mined the Archive of
Formal Proofs, providing a visualization of code growth and most
prolific code contributors, as well as specialized analysis such as
dependency graph analysis, complexity of supporting lemmas in
proofs, and the usefulness of Isabelle’s automated reasoning tool,
sledgehammer. Although we share common elements, the method-
ology used by Blanchette et al. [10] is specialized to Isabelle and
the Archive of Formal Proofs, and we aim to study other proof assis-
tants as well. Gauthier and Kaliszyk [24] identifies code similarities
among proof assistants. Aspinall and Kaliszyk [3] identifies several
software metrics that provide insights into code organization, and
hence proof organization. van Doorn et al. [81] also documented
barriers to entry in the Lean ecosystem and gave examples of tech-
nical tools to effectively maintain and document the Lean Mathlib
library. Our approach focuses on finding similarities and differences
in the user base of each proof assistant, and not the code or project
tooling itself. However, these metrics can be incorporated into
future work for finer analysis of the proof assistant ecosystems.

7 DATA AVAILABILITY STATEMENT

Our entire dataset and scripts are publicly available [42].

8 CONCLUSIONS

Understanding the role of domain expertise on participation is
crucial to characterize and improve highly technical open-source
ecosystems. We conducted a case study of participation in three
highly related technical ecosystems: proof assistants. Using a novel
methodology for categorizing the specializations of developers in
technical ecosystems, we found that core developers tend to be
“jacks-of-all-trades,” bringing expertise from many sub-domains.
Based on the relative absence of short-term contributors, we hy-
pothesize that it may be difficult to casually join these ecosystems,
but also found that retention is high. By comparing the related
ecosystems and their growth, we find evidence that effective ab-
stractions between the underlying tool and its libraries can help
foster growth. Overall, our mining software repositories study sug-
gests multiple future directions for research, including performing
surveys of developers of these communities, and utilizing these
methods to study other technical computing ecosystems.
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