
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Are Mutants a Valid Substitute for Manually-Seeded Faults for
Evaluating Student Test Suiteality?

James Perretta1, Andrew DeOrio2, Arjun Guha1 and Jonathan Bell1
perretta.j@northeastern.edu,awdeorio@umich.edu,a.guha@northeastern.edu,j.bell@northeastern.edu

1Northeastern University, Boston MA USA
2University of Michigan, Ann Arbor MI USA

ABSTRACT
Mutation testing has gained traction as a test suite quality metric
that addresses some of the limitations of code coverage. There is
evidence in the literature that mutants are a valid substitute for
real faults in large open-source software projects. However, it is
unclear whether mutants are representative of the kinds of faults
that novice programmers make when learning to write software.

A common practice in computer science courses is to evaluate
student-written test suites against a set of manually-seeded faults
handwritten by an instructor. Writing these faults by hand, how-
ever, is a time consuming and potentially error-prone process. If
mutants are a valid substitute for faults found in student written
code, and if mutant detection is correlated with manually-seeded
fault detection, then instructors can instead evaluate student test
suites using mutants generated by open-source mutation testing
tools.

Following a well-established methodology, we empirically eval-
uate whether mutants are a valid substitute for manually-seeded
faults. We also evaluate whether mutation score is correlated with
real student fault detection. Our dataset includes a total of 2,711
assignment submissions across six programming assignments from
a total of four courses at three dierent R1 institutions. We collected
one submission per student per assignment. Our results show a
strong correlation between mutation score and manually-seeded
fault detection rate and a moderately strong correlation between
mutation score and real student fault detection. We nd that mu-
tants generated from multiple implementations of the same speci-
cation are likely to represent more real faults than those generated
from a single implementation. Our ndings have implications for
software testing researchers, educators, and tool builders alike.

ACM Reference Format: James Perretta, Andrew DeOrio, Arjun Guha
and Jonathan Bell. 2022. AreMutants a Valid Substitute for Manually-Seeded
Faults for Evaluating Student Test Suite Quality?. In Proceedings of ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2022). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Testing is one of the most important ways to ensure that software
behaves correctly, and one of the most common testing strategies
is the use of human-written test suites. Writing test suites by hand
is necessitated by the complexity of the oracle problem: While
some oracles are simple properties like “the program should not
crash,” human input is needed to specify the full range of desired
and undesired program behaviors. Since it is still considered best-
practice for software to be tested with a suite of human-written
test cases, computer science students should be taught how to
eectively test their own software.

There is a growing body of work that discusses how to teach soft-
ware testing and how to evaluate student-written test cases. Early
work focused on using code coverage as both an evaluation metric
and feedback mechanism [6]. One major limitation of code cover-
age, however, is that it does not guarantee that the assertions in a
test suite properly validate program behaviors [2, 20]. Some instruc-
tors use an “all-pairs” approach where every student-written test
suite is run against every other student-written implementation [7].
While this strategy has the benet of evaluating student test suites
against real faults in student code, it takes signicant manual and
computational eort to apply fairly and accurately [31]. The eort
required to address these challenges increases super-linearly as the
number of students increases.

Other instructors choose to write a set of manually-seeded faults
(applied to an instructor-written implementation) and evaluate how
many of those manually-seeded faults each student-written test
suite detects [31]. This strategy gives the instructor full control over
the number and type of faults used to evaluate student test suites
but still requires signicant manual eort. Additionally, manually-
seeded faults applied to an instructor-written implementation may
not be representative of the full range of student faults, as students
tend to approach problems in fundamentally dierent ways than
experts [3, 29].

An alternative to writing manually-seeded faults is to seed them
automatically (mutation testing), a practice that is gaining adoption
in industry [16] and open-source software projects [25]. Prior work
has explored using mutation testing to evaluate student-written test
suites [2, 19, 24], but there is no evidence that mutation testing is an
eective stand-in for instructor-written faults when grading student
test suites. There is evidence in software engineering research that
automatically-seeded faults (mutants) are a valid substitute for real
faults in large open-source software projects [12], but it is unclear
of whether these results also apply to student-written code. Prior
work suggests that student-written code might have dierent kinds
of faults than expert-written code, and hence it is unclear whether
mutants are a valid substitute for student faults. Making matters

2022-02-22 12:45. Page 1 of 1–12.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea James Perrea, Andrew DeOrio, Arjun Guha and Jonathan Bell

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

more confusing, prior work has reached conicting conclusions
on the question of whether mutation testing an eective means of
evaluating student test suite quality [7, 20, 24].

Contributions: In this paper, we examine the question: “is mu-
tation testing an eective means of evaluating student test suites.”
We conduct a large-scale empirical evaluation of student test suites,
following the well-established methodology of Just et al [12]. Unlike
prior studies of mutation ecacy that examine faults in multiple
revisions of the same implementation, our study provides new
insights by examining multiple independently developed implemen-
tations of the same specication. Our datasets include a total of
2,711 assignment submissions across six programming assignments
from a total of four courses at three dierent R1 institutions. We
collected one submission per student per assignment. We seek to
answer the following research questions:

(1) Is mutation score a good proxy for manually-seeded
fault detection rate? We examine whether mutation score
is correlated with manually-seeded fault detection. If mu-
tation score is a good proxy for manually-seeded fault de-
tection rate, then instructors could avoid the manual eort
required to write those faults. Additionally, if we nd any
manually-seeded faults that are not coupled to at least one
mutant, these faults could suggest a way in which exist-
ing mutation testing tools can be improved (perhaps a new
mutation operator is needed, for example).

(2) Is mutation score a good proxy for real student fault
detection rate?We examine whether mutation score is cor-
related with real student fault detection. When evaluating
student test suites against any kind of faults, it is impor-
tant for the faults to be representative of faults that students
might realistically encounter in their own implementation
source code. If we nd student faults that are not coupled
to at least one mutant, this could suggest a way to improve
mutation testing tools.

(3) Canmutation testing be used to strengthen instructor-
written test suites? Ideally, instructor-written test suites
should be able to detect all possible faults in student imple-
mentations. Since student implementations are assumed to
be correct if they pass the instructor test suite, mutation
testing potentially provides a way of generating faults with
which to evaluate the instructor test suite.

(4) Are mutants of instructor-written implementations a
valid substitute for manually-seeded faults for evalu-
ating student test suite quality? There is evidence in the
literature that mutants are a valid substitute for real faults
in open source software. However, since we do not know
whether manually-seeded faults are representative of real
student faults, we cannot assume that mutants are a valid
substitute for manually-seeded faults.

In our results, we nd a strong correlation between mutation
score and manually-seeded fault detection rate for four out of ve
assignments. We argue that the weak correlation in the fth assign-
ment is largely due do deciencies in the manually-seeded faults. In
two of the assignments we study, we have both student implementa-
tions (some of which contain faults) and student test suites. We nd
a moderately strong correlation between mutation score and real

fault detection rate. Our ndings have implications for software
testing researchers, educators, and tool builders alike. Through a
case study analysis, we nd that mutants generated from multiple
implementations of the same specication are likely to represent
more real faults than those generated from a single implementation.
We conclude with a discussion of the implications of our results
and how to eectively use mutation testing tools for evaluating
student test suites.

2 BACKGROUND
This section introduces mutation testing, mutation scores, and the
approach pioneered by Just et al [12] to evaluate the correlation
between real fault detection rate and mutation scores.

The goal of mutation testing is to quantify the ability of a test
suite to nd faults in a program, thus a test suite with a higher
mutation score ought to be a better test suite. To do so, a mutation
testing framework creates several mutants of the program, where
each mutant (ideally) represents an injected fault. It then runs the
test suite on all mutants. The mutation score of the test suite is the
fraction of mutants that it is able to distinguish from the original
subject program. To construct a single mutant, a mutation-testing
framework applies a single mutation operator, e.g., deleting a state-
ment, reversing a comparison, or eliminating a branch condition.
The set of available operators naturally aects the variety of gener-
ated mutants, and we discuss the operators that our tools employ
in Section 4.1. Not every mutation represents a real fault: in the
general sense, it is unknowable (without manual analysis) whether
a mutation results in equivalent behavior to the original program
or not.

However, real faults are more complicated than single mutations,
so it is not immediately obvious if a test suite’s mutation score
is correlated with its ability to detect real faults, which is what
ultimately matters. Just et al. present a dataset of real-world Java
programs with faults and their xes. They use this dataset to in-
vestigate whether each fault is coupled to some mutant by a given
test suite, where a fault is coupled to a mutant if the test suite that
detects the fault also detects the mutant. They nd that 73% of
real faults are coupled to a generated mutant. For the remaining
uncoupled faults, they suggest new mutation operators, and point
out limitations of mutation testing. They also establish that the
correlation between mutation score and real fault detection rate is
stronger than the correlation between statement coverage and real
fault detection rate.

3 RELATEDWORK
A major topic of software testing research is: how can we automati-
cally evaluate the eectiveness of a test suite? It is now established
that test suite coverage is not always strongly correlated with test
suite eectiveness [10, 14]. It is possible to combine several cov-
erage criteria to better evaluate test suite eectiveness [27]. Jia
and Harman present a survey on mutation testing [11], which Just
et al. [12] show is correlated with real-fault detection, even after
controlling for coverage. Mutation score is also correlated with
defect density [28]. This supports several applications of mutation
analysis, including test suite reduction [21–23].

2022-02-22 12:45. Page 2 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Are Mutants a Valid Substitute for Manually-Seeded Faults for Evaluating Student Test Suite ality? ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

The eectiveness of mutation testing depends on the kinds of
mutants generated, and there are several ways to improve the mu-
tant generation process [4, 13]. While traditional mutation testing
applies only a single mutation at a time [11], one line of research ex-
amines the ecacy of higher order mutations, which are generated
by applying multiple mutation operations simultaneously [9, 30].
Our methodology of studying mutation testing on student program-
ming assignment solutions provides another interesting source of
data to potentially improve the mutant generation process. In partic-
ular, by examining productive mutants that are generated on some
student implementations (but not on others), it may be possible
to design better higher-order mutation operators that could have
generated those mutants from any implementation. Research into
improving mutation testing tools could also make the correlations
that we nd even stronger.

There is also evidence that mutation analysis helps programmers
write better test suites [17]. This paper shows that mutation score is
correlated with fault detection in multiple hidden implementations,
which includes implementations with deliberate faults (written by
instructors), and implementations with accidental faults (written
by students’ peers). The results of our study may help to increase
adoption of mutation testing in educational settings, and it would be
interesting future work to study whether exposing students directly
to mutation testing results would result in better test suites.

One potential concern when attempting to generalize these prior
studies of mutation testing to a classroom setting is that the kinds
of code written by students may not be representative of the code
written by experienced developers. This concern draws on estab-
lished evidence from multiple elds, including computer science,
that novices do not approach problems in the same way as experts,
and thus produce dierent kinds of solutions [3, 29].

In an educational context, prior work examined the use of code
coverage as a feedback mechanism for improving the quality of
student-written tests, nding that improvements in coverage do
not result in improved fault nding ability [6]. Later work shows
that coverage is a poor indicator of student test quality, and instead
develops an approach to grading based on mutation testing [2, 19].
Moreover, in an “all-pairs testing” approach, where students test
each others’ code, no signicant correlation arises between the fault-
detection rate of a test suite and its code coverage or its mutation
score [7, 20].

However, the student test suites used in the studies that reached
this conclusion appear to have come from assignment submissions
where students received feedback on the coverage of their test
suites rather than some fault-detection metric. Moreover, these
prior works do not evaluate the suitability of mutants to stand-in
for instructor-written faults. In our work, we nd that mutation
score is correlated with students’ ability to nd faults that are
manually seeded by an instructor. However, there is a moderately
strong correlation between mutation score and the the ability to
nd faults in other students’ implementations. The dierence in
these results could indicate that giving students actionable feedback
on their test suites’ ability to detect manually-seeded faults does
drive them to write higher quality test suites.

Seeded faults and tests can be constructed and used in a number
of ways. E.g., it is possible to use other students’ submissions as
a source of real faults or as the target for mutation testing [24].

Wrenn et al. [31] discusses several aws with automated assess-
ment of student code, and recommends evaluating student tests
with multiple implementations. Our work shows that mutation
testing is a scalable way of generating multiple (faulty) implementa-
tions and is as eective as having multiple, manually-seeded faulty
implementations.

4 METHODS
Our goal in this study is to determine whether mutation score is
an accurate indicator of student test suite quality. We analyze data
collected from programming assignments in which students were
required to submit source code that conforms to a specication
and/or test cases that were evaluated against a set of manually-
seeded faults. Using o-the-shelf mutation testing tools, we collect
mutation scores for the student test suites and look for a correlation
between mutation score and manually-seeded fault detection rate.
We then examine whether every mutant is coupled to at least one
manually-seeded fault by at least one student-written test case.1

We also examine whether mutation score is a good indicator in
general for the manually-seeded fault detection rate, independent of
statement coverage, using methodology from Just et. al [12]. Prior
work has shown that statement coverage has a conating eect on
mutation score. That is, test suites that exercise more statements
are also likely to detect more mutants. For each manually-seeded
fault, we identify pairs of student test suites, (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠), where
𝑇𝑓 𝑎𝑖𝑙 detects the fault and𝑇𝑝𝑎𝑠𝑠 does not. For each pair, we compute
an adjusted mutation score that only includes mutants present in
code that is covered by both𝑇𝑓 𝑎𝑖𝑙 and𝑇𝑝𝑎𝑠𝑠 . That is, if𝑇𝑓 𝑎𝑖𝑙 covers
a mutant that𝑇𝑝𝑎𝑠𝑠 does not (or vice-versa), that mutant will not be
included in either test suite’s mutation score. We then compare the
median adjusted mutation score for the populations of 𝑇𝑓 𝑎𝑖𝑙 and
𝑇𝑝𝑎𝑠𝑠 test suites and use theWilcoxon signed-rank test to determine
if the dierences in median are statistically signicant.

We also investigate whether mutation score is a good proxy for
real student fault detection rate. Since fault isolation is a complex
problem, we measure real student fault detection as the number of
student implementations detected as containing at least one fault.
We record the real student fault detection rate of each student test
suite and look for a correlation between mutation score and real
student fault detection rate. We also use the instructor test suite and
dierential testing with the instructor implementation as oracles
for the actual number of faulty student implementations.

When recordingmutation score, manually-seeded fault detection
rate, and real student fault detection rate, we take steps to make
sure student-written test cases are free of false positives. We dene
a false positive as a student test case that fails when run against
a correct instructor implementation. We discard tests with false
positives using the same policy applied by the instructors when
the assignments were graded. For some assignments, the entire test
suite was rejected if it contained any false positives. For other as-
signments, only the specic test cases that contained false positives
were discarded. Since students received automated feedback on the
presence of false positives in their tests (and therefore the impact
on their grade), we know that discarding test suites or test cases in
1A mutant is coupled to a fault if there is a test case that detects both the mutant and
the fault.

2022-02-22 12:45. Page 3 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea James Perrea, Andrew DeOrio, Arjun Guha and Jonathan Bell

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the same way as in the original assignment grading process will
not be overly aggressive.

4.1 Mutation Testing Tools Used
We use two open-source mutation testing tools in our study: Stryker
Mutator [25] version 5.4.1 for assignments written in JavaScript
and TypeScript and Mull [5] version 0.14.0 for assignments written
in C++. We enabled all mutation operators supported by Stryker
for JavaScript (this is the default option) and all non-experimental
mutation operators supported by Mull for C++ (using the option
–mutators=cxx_all). Stryker applies its mutation operators at the
AST level and supports a variety of mutation operators including
arithmetic and logical operator replacements, conditional expres-
sion replacement, and statement deletion. A full list of supported
operators can be found on the Stryker website [26]. In contrast,
Mull applies its mutation operators at the bytecode level for faster
performance and then maps the bytecode modication back to a
source code location to present to the human user. While Mull’s list
of supported mutation operators [15] includes arithmetic and logi-
cal operator replacement, it does not support statement deletion or
conditional expression replacement to the same extent that Stryker
does. Instead, Mull supports a "remove void call" mutation operator
that removes a call to a function that returns void and a "replace
scalar call" mutation operator that replaces a call to a function that
returns a scalar value with the integer literal 42.

4.2 Datasets
We examined assignments from four courses from three dierent
R1 institutions. To address our research questions, we required the
following information:

RQ1 Student test suite implementations, which were graded
using manually-seeded faults, and which could be executed
using an o-the-shelf mutation testing tool

RQ2 The same as RQ1, plus student implementations of the
system under test

RQ3 Student implementations of the system under test, and
an instructor-written test suite that could be executed using
an o-the-shelf mutation testing tool

We answer RQ4 by synthesizing the results to RQ1, RQ2, and RQ3.
We selected programming assignments that met these criteria. Table
1 summarizes key information about the programming assignments
we collected data from. It was dicult to identify many assignments
that satised all of the criteria, and hence some assignments are
used only to address some of the research questions. We examined
a total of 2,711 assignment submissions across six programming
assignments taken from a total of four courses from three dierent
R1 institutions. We collected only one submission per student for
each assignment. Here we briey summarize each assignment.

OOP Card Game (“Game Card” and “Game Player”). For this
assignment, students implemented abstract data types (ADTs) rep-
resenting a card in a standard deck of 52 playing cards and a player
in a card game. Students also wrote test cases for those ADTs and
wrote a command-line application simulating a card game using
those ADTs. The ADTs interact with each other (e.g., a player holds

cards in their hand), but each of the ADTs were evaluated sepa-
rately from each other when students submitted their source code.
Therefore, we will treat the data collected from the “Game Card”
and “Game Player” ADTs as two separate datasets in our analyses.

Students were allowed to work alone or with a partner. We
collected 785 assignment submissions total (one submission per
student/partnership), of which 768 were usable (i.e., we discarded
les with compiler errors) for Game Card and 762 were usable
for the Game Player portion of the assignment. Students’ ADT
implementations were evaluated by an instructor-written test suite,
and their test cases were evaluated against a set of manually-seeded
faults. Students could submit their work to an automated grading
system and receive feedback up to three times per day. For their
ADT implementation, students received full feedback (exit status
and output) on a few minimal, publicly available test cases. For
their test cases, students were shown how many manually-seeded
faults their tests detected with no additional information about
the faults. The assignment was implemented in C++. We collected
the following data from the usable student submissions: mutation
scores for every student test suite using the Mull [5] mutation
testing tool, the number of manually-seeded faults detected by
every student test suite, the number of student implementations
that contain at least one fault according to the instructor test suite,
and the number of student implementations that contain at least
one fault according to another student test suite.

Stable Marriage. Students wrote test cases for a set of instructor-
written implementations of the classic Gale-Shapley stable marriage
algorithm [8] that share a common interface. Students structured
their test cases to randomly generate inputs, pass those inputs to
an instructor-specied implementation, and then verify whether
the return value is a valid solution for that input. Student test cases
were evaluated with several correct stable marriage implemen-
tations and eight implementations with manually-seeded faults.
Students received feedback from an automated grading system on
how many faults their tests detected as frequently as they wished.
The assignment was implemented in JavaScript. We collected the
following data from 485 student submissions (one submission per
student): mutation scores for every student test suite using Stryker
Mutator [25] and the number of manually-seeded faults detected
by every student test suite.

WebApp. Students wrote test cases for an instructor-written im-
plementation of a REST-based web service. Student test cases were
evaluated against a set of manually-seeded faults. Students could
submit their work to an automated grading system and receive
feedback an unlimited number of times. Students were shown how
many manually-seeded faults their tests detected with no additional
information about the faults. The assignment was implemented in
TypeScript. We collected the following data from 93 student sub-
missions: mutation scores for every student test suite using Stryker
Mutator [25] and the number of manually-seeded faults detected
by every student test suite.

Sorting. Students wrote test cases for a set of instructor-written
sorting implementations that share a common interface. The sorting
implementations were bubble sort, heap sort, tree sort, quick sort,
and merge sort. Student test cases were evaluated against a set of

2022-02-22 12:45. Page 4 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Are Mutants a Valid Substitute for Manually-Seeded Faults for Evaluating Student Test Suite ality? ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Summary of the programming assignments we collected data from. A “Yes” in the “Has Student Impls” column indicates
that students implemented some software artifact conforming to a specication and submitted their source code implementation for grading.
A “Yes” in the “Has Student Tests” column indicates that students wrote and submitted test cases for grading. The test cases were graded
by being run against a set of manually-seeded faults, and a grade was assigned based on how many manually-seeded faults the test cases
detected. All assignments were graded using some sort of automated grading system that would give students immediate feedback on
their work. The “# of Submissions/Day” column indicates the number of times that students were allowed to submit their test cases to the
automated grading system and still receive feedback. The “Test Case Feedback” column summarizes the feedback that students received on
their test cases from the automated grading system. “# of faults detected” indicates that students were shown how many manually-seeded
faults their tests detected, but not which specic faults those were. LOC is lines of code (excluding blank lines and comments) of the instructor
implementation from which manually-seeded faults were constructed for the assignment.

Assignment # of Submissions Has Student Impls Has Student Tests # of Submissions/Day Test Case Feedback LOC

Game Card 768 Yes Yes 3 # of faults detected 136
Game Player 762 Yes Yes 3 # of faults detected 127
Stable Marriage 485 Yes Unlimited # of faults detected 79
WebApp 93 Yes Unlimited # of faults detected 265
Sorting 90 Yes 5 # of faults detected 190
Restaurants 513 Yes n/a n/a 81

manually-seeded faults. Students could submit their work to an
automated grading system and receive feedback up to ve times
per day. Students were shown how many manually-seeded faults
their tests detected with no additional information about the faults.
The assignment was implemented in TypeScript. We collected the
following data from 90 student submissions: mutation scores for
every student test suite using Stryker Mutator [25] and the number
of manually-seeded faults detected by every student test suite.

Restaurants. Students implemented six methods to process Yelp
restaurant reviews in JSON. Their implementations were evaluated
by an instructor-written test suite. Students could submit their
work to an automated grading system and receive feedback on a
subset of the instructor-written test suite unlimited times per day.
The assignment was implemented in JavaScript. We collected the
following data from 513 student submissions: the number of student
implementations that contained at least one fault according to the
instructor-written test suite.

5 EVALUATION
We conduct an analysis of the data we collected from these six pro-
gramming assignments, addressing each of our research questions.

5.1 RQ1: Is mutation score a good proxy for
manually-seeded fault detection rate?

We start by examining the relationship between mutation score
(number of mutants detected) and manually-seeded fault detection
rate on the ve programming assignments in which students sub-
mitted test suites. Figure 1 shows scatter plots of mutation score vs.
number of manually-seeded faults detected. For all but one of these
assignments (the Sorting assignment), we see a strong correlation
between mutation score and manually-seeded fault detection. We
also examined whether every manually-seeded fault is coupled to
at least one mutant by at least one student-written test case and
did not nd any uncoupled manually-seeded faults. This implies
that manually-seeded faults and mutants have a similar capacity to

measure test suite quality. It may also suggest that requiring stu-
dents to write test cases with the goal of detecting an undisclosed
set of manually seeded faults guides students towards writing test
cases that are capable of detecting mutants.

5.1.1 Sorting Project: alitative Analysis. Since we only saw a
weak correlation between mutation score and manually-seeded
fault detection for the “Sorting” project, we investigate what fac-
tors may have contributed to this. First, we examine the two outliers
with mutation scores signicantly higher than all the other submis-
sions. After looking at which mutants these students detected that
other students did not and discussing it with the course instructor, it
became clear that these students were testing under-specied parts
of the assignment. Specically, the initial version of the assignment
did not specify that the TypeScript compiler should be run with
strict null-checks enabled, which created ambiguity about whether
students were required to test the sorting implementations with
null and undefined inputs. The instructor informed the students
that they did not need to write tests using these inputs and updated
the sorting implementations under test to include checks for null
and undefined. The extra mutants that these two students detected
were simply changes to these added checks, and since students were
told that they need not write tests with null and undefined inputs,
we can safely ignore these outliers. With those outliers removed,
the Pearson correlation coecient becomes 0.35.

Next, we examine the manually-seeded faults used to evaluate
students’ test cases. It seems that the manually-seeded faults were
conceived of as trying to represent obscure edge cases rather than
a full range of sorting implementation behaviors. Some examples
of these faults include: throwing an exception if the input array is
of size one, throwing an exception if the input array has a string as
its rst element, only sorting the even- or odd-indexed elements
of the array, and only sorting the rst 256 elements of the array.
We believe that these faults are not representative of realistic faults
that students might encounter in their own code, and this may have

2022-02-22 12:45. Page 5 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea James Perrea, Andrew DeOrio, Arjun Guha and Jonathan Bell

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

0 2 4 6 8 10 12 14 16
of manually-seeded faults detected

0

5

10

15

20

25

30

35

40

45

50

55

of
 m

ut
an

ts
 d
et
ec
te
d

N = 768
r = 0.89

Game Card

0 2 4 6 8 10 12 14 16 18 20
of manually-seeded faults detected

0

10

20

30

40

50

60

of
 m

ut
an

ts
 d
et
ec
te
d

N = 762
r = 0.90

Game Player

0 2 4 6 8
of manually-seeded faults detected

0

50

100

150

200

250

300

350

of
 m

ut
an
ts
 d
et
ec
te
d

N = 485
r = 0.90

Stable Marriage

0 10 20 30 40 50
of manually-seeded faults detected

95

100

105

110

115

120

125

130

135

of
 m

ut
an

ts
 d
et
ec
te
d

N = 95
r = 0.93

WebApp

0 2 4 6 8 10 12
of manually-seeded faults detected

195

200

205

210

215

220

225

of
 m

ut
an

ts
 d
et
ec

te
d

N = 90
r = 0.24

Sorting

Figure 1: RQ1: Is mutation score a good proxy for manually-seeded fault detection rate? Each dot represents one student-written
test suite. The x-axis shows the number of manually-seeded faults detected, and the y-axis shows the number of mutants detected by each
student-written test suite. We see a strong correlation for all assignments except for “Sorting.”

weakened the correlation between mutation-score and manually-
seeded fault detection for this assignment. We discussed this matter
with the class’ instructional sta, who agreed that these faults did
not match the learning objectives for the assignment, and who were
interested in following our work to understand if mutation testing
could replace the manual fault-seeding process.

5.1.2 Controlling for Coverage. We follow Just et. al’s methodology
to examine whether a high mutation score is indicative of a high
manually-seeded fault detection rate, independent of code coverage.
We use 𝑇𝑓 𝑎𝑖𝑙 to indicate a test suite that detects a particular fault
and 𝑇𝑝𝑎𝑠𝑠 to indicate a test suite that does not detect a particular
fault. Taken together, (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) indicates a pair of test suites
where the rst detects a fault and the second does not detect that
same fault. For four out of the ve projects we analyzed, we see
in Table 2 that for every manually-seeded fault for which at least
one (𝑇𝑓 𝑎𝑖𝑙 ,𝑇𝑝𝑎𝑠𝑠) pair exists, the median mutation score of the𝑇𝑓 𝑎𝑖𝑙
population is signicantly higher than that of the 𝑇𝑝𝑎𝑠𝑠 population.
For the fth project (Sorting), we see that this is the case for half of
the manually-seeded faults for which at least one (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠 pair
exists).

5.1.3 Sorting Project. For one of the manually-seeded faults, we
observe that the 𝑇𝑓 𝑎𝑖𝑙 population for that fault has a lower me-
dian mutation score than its corresponding 𝑇𝑝𝑎𝑠𝑠 population. The
manually-seeded fault in question here is one that throws an excep-
tion when the input array is only one element. We suspect that this
fault is not representative of a real student fault, and we attempted
to write our own more realistic fault that is only detectable with

an input of size one. That is, the modied implementation should
return the wrong answer for inputs of size one but not for any larger
inputs. We were unable to come up with such a fault after some
collective eort. As such, we nd it unsurprising that detection of
this manually-seeded fault does not imply a higher mutation score.

5.1.4 RQ1 Conclusions. We found no examples of manually-seeded
faults that were not coupled to at least one mutant. For four out
of ve assignments, we see a strong correlation between mutation
score and manually-seeded fault detection rate. For the fth assign-
ment where we saw a weak correlation, we found that many of
the manually-seeded faults did not match the learning objectives

Table 2: Summary of (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) analysis for each assign-
ment. Themiddle column states howmany of themanually-seeded
faults for that assignment had at least one (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) pair. The
right column states how many of the 𝑇𝑓 𝑎𝑖𝑙 populations had a sig-
nicantly higher median mutation score than their corresponding
𝑇𝑝𝑎𝑠𝑠 population.

Assignment (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) populations Signicant

Game Card 15/15 15/15
Game Player 20/20 20/20
Stable Marriage 8/8 8/8
WebApp 47/48 47/47
Sorting 8/12 4/8

2022-02-22 12:45. Page 6 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Are Mutants a Valid Substitute for Manually-Seeded Faults for Evaluating Student Test Suite ality? ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

of the assignment.2 We also analyzed whether mutation score is a
good indicator in general for manually-seeded fault detection rate,
independent of statement coverage, and found in almost every case
that detection of a given manually-seeded fault is associated with
having a higher mutation score. This evidence supports the con-
clusion that mutation score is a strong proxy for manually-seeded
fault detection rate.

5.2 RQ2: Is mutation score a good proxy for
real student fault detection rate?

We next investigate whether mutation score is a good proxy for real
student fault detection. As described in Section 4, we dene a “real
student fault” as a student implementation that failed at least one
test, and that this failing test passed when run on the instructor-
written implementation. The “real student fault detection rate” for
a test suite, then, is the number of faulty student implementations
detected by a student-written test suite. We use the Game Card and
Game Player assignments in our analysis (note that these are our
only two datasets with both student implementations and student-
written test suites). Figure 2 shows scatter plots of the number
student implementations detected as faulty vs. mutation score for
each student test suite for these assignments. We see moderately
strong correlations in both cases (0.67 for Game Card and 0.79 for
Game Player).

We conduct a case study on the Game Card assignment to deter-
mine why the correlation between faulty student implementation
detection and mutation score is not as strong as the correlation
between manually-seeded fault detection and mutation score. One
hypothesis for this weaker correlation is that faults in student code
are dierent than mutants or that student implementations are
structured dierently from the instructor implementation the mu-
tants were generated from. Another hypothesis is that faults are not
evenly distributed throughout the student-written implementations.
We investigate these hypotheses by examining faults in student
code that the instructor-written test suite did not detect any faults
in. If enough of these faults are coupled to a mutant, this would
suggest that faults are not evenly distributed throughout student-
written implementations. If we nd faults that are not coupled to
at least one mutant, we then seek to determine whether they might
be coupled to a mutant created using a new or modied mutation
operator. The key ndings of our case study are as follows:

(1) Faults are not evenly distributed throughout student imple-
mentations. Some student implementations contain more
faults than others, and some faults are present in more stu-
dent implementations than other faults.

(2) After adding a few additional test cases to the instructor test
suite in order to increase the instructor test suite’s mutation
score by 10%, we see a 92% increase in the number of student
implementations detected as containing at least one fault.

(3) Of the remaining undetected faulty student implementations,
only 31 (about 5% of all faulty implementations) contain
faults that are not coupled to mutants produced from a new
or existing mutation operator. The structure of these imple-
mentations diers signicantly from that of the instructor
implementation.

2We conrmed this with the TAs and instructors of the course.

5.2.1 Game Card Assignment Case Study. Our case study proceeds
as follows: First, we obtain an accurate baseline for the number of
student implementations that contain at least one fault. Second, we
add test cases to the instructor test suite in order to maximize its
mutation score and evaluate which additional student implementa-
tions the enhanced instructor test suite detects. Third, we add test
cases to the instructor test suite that detect at least one fault in the
remaining student implementations and try to determine whether
those faults could be coupled to a mutant produced using a new or
enhanced mutation operator.

Total Number of Faulty Student Implementations.We obtain three
dierent measurements of the number of student implementations
that contain at least one fault: Using the instructor test suite, using
the pool of all student test suites, and using dierential testing
with the instructor implementation. Since the methods students
implemented in the Game Card assignment have a relatively small
number of legal inputs (there are only 52 playing cards in a stan-
dard deck), we were able to conduct exhaustive dierential testing
on those methods against the instructor-written implementation.
That is, for each method in each student implementation, we com-
pared the return value of that student’s implementation of that
method to the return value of the instructor’s implementations of
that same method for every legal combination of input arguments.
If the student implementation returned a dierent value from the
instructor implementation for any legal input to any of the methods,
we marked the student implementation as containing at least one
fault. According to the instructor test suite, 250 student implemen-
tations contained at least one fault. According to the student test
suites combined, 558 student implementations contained at least
one fault. According to exhaustive dierential testing, 558 student
implementations contained at least one fault. This suggests that
the instructor-written test suite is not as thorough as it could be,
whether by mistake or intentionally.

Maximizing the Instructor Test Suite’s Mutation Score. We added
additional test cases to the instructor test suite in order to maximize
its mutation score. Each new test case was specically targeted to-
wards one undetected mutant. That is, we wrote each new test with
the goal of testing one program behavior. The mutation score of the
unmodied instructor test suite was 50/59 (84%). After adding test
cases, the mutation score increased to 56/59 (95%). We note that the
mutation tool (Mull) actually reported a score of 54/59 (91%) at this
point, but we determined that two of the mutants should have been
reported as detected. We conrmed this by manually applying those
two mutations to the instructor implementation and re-running the
instructor test suite on the manually-mutated code. We discuss the
limitations of Mull in Section 4.1. We determined that the remaining
three mutants were equivalent. The enhanced instructor test suite
reported 258 student implementations as containing at least one
fault, an increase of about 3%.

During this process, we observed two instances where Mull
did not apply mutation operators where we expected it to. The
rst of these involved replacing a scalar call with 42 (note that
in this context this is equivalent to replacing an expression with
true), and the second involved replacing a less-than operator with
less-than-or-equal-to. We suspect that these two mutants were not
generated due to limitations in Mull’s implementation (bytecode
rather than AST manipulation). We generated these two mutants

2022-02-22 12:45. Page 7 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea James Perrea, Andrew DeOrio, Arjun Guha and Jonathan Bell

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 100 200 300 400 500
of faulty student implementations detected

0

10

20

30

40

50

60

of
 m

ut
an

ts
 d
et
ec
te
d

N = 768
r = 0.67

Game Card

0 100 200 300 400
of faulty student implementations detected

0

10

20

30

40

50

60

70

of
 m

ut
an

ts
 d
et
ec
te
d

N = 762
r = 0.79

Game Player

Figure 2: RQ2: Is mutation score a good proxy for real student fault detection rate? Each dot represents one student-written test
suite. The x-axis shows the number of student-written implementations detected as having at least one fault, and the y-axis shows the
number of mutants detected by each student-written test suite.

by hand and added test cases to the instructor test suite that detect
them. This version of the instructor test suite was able to detect 480
faulty student implementations, a 92% increase over the unmodied
instructor test suite and an 86% increase over the previous version
of the enhanced instructor test suite.

New or Modied Mutation Operators. Next, we attempted to de-
termine whether the rest of the undetected faulty student imple-
mentations might be coupled to a mutant generated with a new or
modied mutation operator. We constructed two more mutants by
hand that could be produced with a modied version of the argu-
ment omission mutation operator discussed in Just et al [12]. This
modied operator would apply argument omission to all identical
function calls within a statement instead of only a single call. We
added test cases to the instructor test suite that detect these two
hypothetical mutants. This version of the instructor test suite then
detected 527 faulty student implementations, leaving only 31 more
undetected faulty student implementations.

Remaining Undetected Faulty Student Implementations. Of the
remaining faulty student implementations, 17/31 (55%) contained
at least one unique fault. That is, about half of these faulty im-
plementations were coupled to at least one of the unique faulty
implementations. Eight of these 31 faulty student implementations
contained faults in their handling of cards with ranks below nine.
However, since the card game being implemented does not use
these cards, the instructors perhaps did not want to grade students
based on those behaviors (note that this behavior is well-dened
in the specication, but nonetheless represents a corner-case). We
focus instead on the 23 other faulty implementations, of which 11
are unique. These faults may not be reproducible as mutants of the
instructor implementation because the structure of those students’
implementations diers signicantly from that of the instructor im-
plementation in which the mutants were generated. It may be the
case that mutation testing tools could produce mutants coupled
to these faults if applied to other correct implementations that are
structured dierently.

5.2.2 RQ2 Conclusions. For our pair of assignments that provided
both student implementations (some of which were buggy) and stu-
dent test suites, we found a moderately strong correlation between
mutation score and real fault detection rate. We see these moder-
ately strong correlations despite the fact that faults were not evenly
distributed throughout student implementations (i.e., some student
implementations contain more faults than others, and some faults
are present in more student implementations than other faults).
After accounting for the limitations of the mutation testing tool we
used for those assignments, we found only a small number of stu-
dent implementations with at least one fault that was not coupled
to at least one mutant. We note that the set of mutation operators
supported by mutation testing tools is a very important factor in
its ability to produce faults that are representative of real student
faults. This evidence suggests that mutation score is a reasonably
good proxy for real student fault detection rate even though we
only generated mutants from a single instructor-written implementa-
tion. Prior work also supports the notion that generating mutants
from a broader range of instructor- or (correct) student-written
implementations would strengthen these results [24].

5.3 RQ3: Can mutation testing be used to
strengthen instructor-written test suites?

We investigate the extent to which mutation testing can be used to
strengthen instructor-written test suites. That is, whether increas-
ing the mutation score of an instructor-written test suite increases
its ability to detect real faults in student code. To address this re-
search question, we need only examine student-written solutions
of the assignment, and not student-written test cases. We discussed
the results of strengthening the instructor test suite for the Game
Card assignment in Section 5.2.1. Adding test cases to the instructor
suite to maximize its mutation score resulted in a 92% increase in
student implementations detected as containing at least one fault.

For the Restaurants assignment, the mutation score of the un-
modied instructor test suite was 75/138 (54%). We added ve test
cases to increase the mutation score to 97/138 (70%), an increase
of 29%. Although the new tests did not detect any faults in student
implementations that did not already have at least one detected

2022-02-22 12:45. Page 8 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Are Mutants a Valid Substitute for Manually-Seeded Faults for Evaluating Student Test Suite ality? ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

fault, the methods students were required to write do not depend
on each other. This allows us to perform some additional analysis.
For each added test case, we constructed a list of other test cases
in the instructor test suite that might fail because of the same un-
derlying fault. For each of these (new test case, related old
test cases) pairs, we looked for student implementations that
failed the new test case but that did not fail any of the related old
test cases. After conducting this analysis, we found 217 previously-
undetected faults across 179 student implementations (35%). That
is, more than a third of the student implementations contained at
least one undetected fault. Of these newly-detected faults, ve were
coupled to a mutant of Method 2, another ve were coupled to a
mutant of Method 3, 38 were coupled to a mutant of Method 4, 29
were coupled to a mutant of Method 6, and 140 were coupled to
another mutant of Method 6.

5.3.1 RQ3 Conclusions. We found two assignments where adding
test cases to the instructor-written test suite with the goal of in-
creasing the mutation score resulted in large increases in student
fault detection capability. This suggests that mutants are coupled
to certain kinds of real student faults that instructors may overlook
when writing test suites with which to evaluate student implemen-
tations. Additionally, instructors can strengthen their test suites
using mutation testing before any students submit implementations
and/or test cases with which to evaluate the instructor test suite.
Reviewing the output of state-of-the-art mutation testing tools also
requires signicantly less manual and computational eort than ap-
proaches that leverage the pool of student implementations and/or
test cases. We recommend that instructors evaluate their own test
suites using an o-the-shelf mutation testing tool.

5.4 RQ4: Are mutants a valid substitute for
manually-seeded faults for evaluating
student test suite quality?

Our results in Section 5.1 show that mutation score is a strong proxy
for manually-seeded fault detection rate, and in Section 5.2 we nd
that mutation score is reasonably good proxy for real student fault
detection rate. We found no examples of manually-seeded faults
that were not coupled to at least onemutant, andwe found relatively
few student implementations with at least one fault not coupled
to at least one mutant. This evidence supports the conclusion that
mutants are a good substitute for manually-seeded faults when
evaluating student test suite quality.

6 DISCUSSION
We present the implications of our results for software testing re-
searchers, for software testing educators, and for mutation testing
tool builders. We also reect on the threats to validity of our con-
clusions and the eorts that we took to mitigate those threats.

6.1 Implications for Researchers
Our work has implications for future work in mutation testing
research. Most experiments that have evaluated the suitability of
mutation testing to stand in for real faults has considered faults in
successive versions of a single implementation of the software under
test. However, one of the implicit goals of mutation testing is to
measure test suite quality independent of implementation structure.

Our results suggests a line of work that involves generating mutants
from multiple implementations, sourced from student code.

There is a growing trend of using mutation testing in industry,
but one of the main priorities in that setting is to reduce the total
number of mutants that need to be generated and therefore reduce
the computational eort required to run mutation testing tools.
Research in which mutants are generated from multiple implemen-
tations could help answer the question of which mutants are the
most productive for measuring test suite quality.

Although our datasets span several dierent institutions, there
is still a wealth of other instructors who use various strategies to
evaluate student test suite quality. Conducting additional research
into using test suite qualitymetrics on student test suites using other
datasets could help improve our understanding of the trade-os of
these metrics and strategies. Furthermore, research on the nature
of student faults and student test suite quality may help improve
our understanding of the dierences between novice- and expert-
written faults and test suites, which would likely have implications
for our understanding of test suite quality metrics.

6.2 Implications for Educators
Our results show that instructors who use manually-seeded faults
to evaluate student test suite quality could likely use mutants to
generate a broader range of faults (perhaps generating the mutants
from multiple implementations). Using an o-the-shelf mutation
testing tool requires much less manual eort than writing manually-
seeded faults and helps ensure that student tests will be evaluated
against realistic faults.

We note that mutation score should not be directly interpreted as a
test suite quality grade due to equivalent mutants. Either a mutation
score threshold for full credit can be applied, or the mutants can be
generated ahead of time and equivalent mutants discarded. Generat-
ing the mutants ahead of time has the added benet of reducing the
computational overhead of mutants that result in timeouts during
grading. There is some discussion of this process in prior work [19].
Additionally, instructors can use mutation testing on their own
test suites in order to help ensure that these instructor-written
test suites exercise a broad range of program behaviors in student
implementations. We believe that our study will provide educators
with additional condence to use mutation testing to grade student
test suites, and that these collective experiences will help to better
determine how to use the results in grading.

In our experiments, we evaluated student test suites against mu-
tants generated from the instructor’s reference implementation.
Prior work explored evaluating student test suites against mutants
generated from the same student’s implementation [2]. While using
this approach for grading has notable drawbacks, it may be worth
revisiting the question of whether students should be encouraged
to use mutation testing on their own implementations, outside of
the assignment submission feedback loop. Prior work suggests that
students benet from frequent, actionable feedback [6, 24], and
teaching students how to apply mutation testing on their own may
give them additional opportunities to receive feedback on their
work. This may help improve students’ ability to reason about their
source code through the process of determiningwhether undetected
mutants are equivalent. Code Defenders [18] is an interesting exam-
ple of how these learning goals can be combined with gamication,

2022-02-22 12:45. Page 9 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea James Perrea, Andrew DeOrio, Arjun Guha and Jonathan Bell

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

and perhaps there is future work that could explore the use of
mutation testing tools in such a context.

Finally, our ndings suggest that mutation testing tools have
untapped potential in educational settings, and we look forward
to engaging with the community on this topic. We plan to release
publicly-available information about the assignments we used in
our evaluation so that other instructors can use them as a reference
for how to structure future assignments that involve evaluating
student test suite quality.

6.3 Implications for Tool Builders
Tool builders may be interested in providing better support for
educational applications of mutation testing, since ease of adoption
for instructors may improve the visibility of those tools. Mutation
testing tools are often designed for the use case where the tool is
run once, the results analyzed, the test suite improved, and then the
tool is re-run, and results re-analyzed. The output of these tools is
typically an HTML report that shows mutants that were and were
not detected, as well as overall summary statistics.

To eectively apply mutation testing to grade student test suites,
it is most useful for the mutation testing tool to support a dis-
tinct “mutant generation” phase, where an instructor can determine
which mutants should be executed on subsequent executions of
student code. Similarly, it is necessary for the mutation testing tool
to provide some stable mapping of the mutations that are detected
by a test suite, so that it is possible to determine which mutants
were detected by an instructor test suite, but not a student test suite.
Stryker and Mull both support reporting their results as a JSON le
that follows the Mutation Testing Report schema [1], which makes
it possible to develop portable utility programs that could provide
initial support for these features. While being able to independently
develop such utility programs is a useful feature, educators should
work with mutation tool builders to standardize these interfaces
and integrate such features into the tools themselves, which could
make it easier to adopt the tools in class.

Our results suggest potential use cases for more easily compar-
ing the mutation scores of multiple test suites, generating mutants
from multiple implementations, and pre-generating mutants. Tool
builders could also support features that help measure mutant pro-
ductivity (i.e., which mutants are more likely to illicit an eective
test [13]). For example, mutation testing tools could support com-
paring the mutation scores of multiple test suites so that software
developers could examine how a test suite evolves over time.

6.4 Threats to Validity
Construct: Are we asking the right questions? Our research questions
are based on established research questions from the mutation
testing literature. We posed our new research questions before
we examined our dataset. These questions were prompted by our
experience developing instructor-written faults and test suites, and
anecdotal evidence that they can be inadequate.

Internal: Do our methods and datasets aect the accuracy of our
results? Many of our research questions require assignments where
student-written tests are graded by their ability to detect instructor-
written faults. When evaluating the relationship between mutation
score and real student fault detection, we were only able to include

two assignments from the same course, as the other assignments re-
quired students to submit only their test suites and not their source
implementations. Our case study only examined one of these two
assignments, as sifting through faults in hundreds of student imple-
mentations detected by hundreds of student test suites requires a
tremendous amount of manual eort. We were only able to record
the number of student implementations containing at least one
fault rather than the total number of real faults. Fault localization is
a challenging problem with its own body of research, and manual
fault localization for this many submissions is impractical.

There could be bugs in the scripts that we wrote, or the tools
that we used. We carefully examined the output of each step in
our analysis, and investigated discrepancies. We observed a few
concerning behaviors when using Mull, although we did not nd
these deciencies to make a signicant impact on our nal conclu-
sions. In some cases, Mull did not apply its mutation operators in
places we expected it to. We also observed two instances where
Mull reported a particular mutant as undetected even though we
independently veried that the test suite in question did actually
detect that mutant. We manually applied the mutation to a copy
of the implementation source code, ran the test suite, and noted
several test cases failing, which suggests potential bugs in Mull.

In order to determine the severity of this discrepancy, we con-
ducted an experiment on a single assignment (Game Card), where
we manually seeded all of the mutants that Mull reported to have
created. The results of this experiment were suciently similar to
the results that we reported in Section 5.2 that we determined that
any discrepancies caused by Mull’s implementation decisions do
not inuence our conclusions. Hence, despite the possibility for
bugs in this tool, we feel condent that our analysis of the mutants,
test results, and results hold.

External: Would our results generalize? Our evaluation uses six
programming assignments, and they may not be representative of
every kind of programming assignment. However, our assignments
were drawn from four dierent courses, from three dierent insti-
tutions, and have 2,711 total submissions. The assignments are in
two programming languages and use two dierent o-the-shelf
mutation testing tools. While we are not permitted to release stu-
dent submissions, we will make our entire evaluation and analysis
pipeline publicly available so that other researchers may replicate
our work using a dierent set of student submissions.

It is not the case that mutation testing can help strengthen every
instructor-written test suite. We investigated instructor-written
test suites from three other assignments, and found that those test
suites were already extremely strong, and could not be improved
further using mutation analysis or manual inspection. We examined
every mutant that was not detected, and veried that they were
equivalent to the instructor-written solution.

7 CONCLUSION
We investigated whether mutants can be used in place of manually-
seeded faults when evaluating student test suite quality. Our re-
sults show that the open-source mutation testing tools we used in
our evaluation produce mutants of equal or higher quality than
manually-seeded faults written by instructors on all ve program-
ming assignments we evaluated. We recommend that instructors

2022-02-22 12:45. Page 10 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Are Mutants a Valid Substitute for Manually-Seeded Faults for Evaluating Student Test Suite ality? ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

use mutants instead of manually-seeded faults when evaluating
student test suite quality, as writing manually-seeded faults can be
error-prone. We also found that mutants generated from a single
instructor-written implementation are a reasonably good stand-in
for real faults in student implementations. Generating mutants from
additional implementations that are structured dierently would
likely yield even better results. Future research in mutation test-
ing should consider evaluating mutants generated from multiple
implementations of the same system under test when feasible.

REFERENCES
[1] 2022. Mutation Testing Report Schema. https://github.com/stryker-mutator/

mutation-testing-elements/tree/master/packages/report-schema
[2] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. 2010. Mutation Analysis vs. Code

Coverage in Automated Assessment of Students’ Testing Skills. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion (Reno/Tahoe, Nevada, USA)
(OOPSLA ’10). Association for Computing Machinery, New York, NY, USA, 153–
160. https://doi.org/10.1145/1869542.1869567

[3] Michelene T. H. Chi, Robert Glaser, and Ernest Rees. 1982. Expertise in problem
solving. Advances in the psychology of human intelligence Vol. 1 (1982), 7–76.

[4] Pedro Delgado-Pérez, Louis M. Rose, and Inmaculada Medina-Bulo. 2019.
Coverage-Based Quality Metric of Mutation Operators for Test Suite Improve-
ment. Software Quality Journal 27, 2 (jun 2019), 823–859.

[5] A. Denisov and S. Pankevich. 2018. Mull It Over: Mutation Testing Based on
LLVM. In 2018 IEEE International Conference on Software Testing, Verication and
Validation Workshops (ICSTW). 25–31. https://doi.org/10.1109/ICSTW.2018.00024

[6] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. J. Educ. Resour. Comput. 3, 3 (sep 2003),
1–es. https://doi.org/10.1145/1029994.1029995

[7] Stephen H. Edwards and Zalia Shams. 2014. Comparing Test Quality Measures
for Assessing Student-Written Tests. In Companion Proceedings of the 36th Inter-
national Conference on Software Engineering (Hyderabad, India) (ICSE Companion
2014). Association for Computing Machinery, New York, NY, USA, 354–363.
https://doi.org/10.1145/2591062.2591164

[8] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage.
The American Mathematical Monthly 69, 1 (1962), 9–15. http://www.jstor.org/
stable/2312726

[9] Mark Harman, Yue Jia, Pedro Reales Mateo, and Macario Polo. 2014. Angels
and Monsters: An Empirical Investigation of Potential Test Eectiveness and
Eciency Improvement from Strongly Subsuming Higher Order Mutation. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE ’14). Association for Computing Machinery,
New York, NY, USA, 397–408. https://doi.org/10.1145/2642937.2643008

[10] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Eectiveness. In International Conference on Software Engineering
(ICSE).

[11] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of
mutation testing. TSE 37, 5 (2011).

[12] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654–665. https://doi.org/10.
1145/2635868.2635929

[13] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from
Program Context. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA
2017). Association for Computing Machinery, New York, NY, USA, 284–294.
https://doi.org/10.1145/3092703.3092732

[14] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage
and test suite eectiveness: Empirical study with real bugs in large systems.
In International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 560–564. https://doi.org/10.1109/SANER.2015.7081877

[15] Mull Supported Mutation Operators 2021. Mull: Supported Mutation Operators.
https://mull.readthedocs.io/en/0.14.0/SupportedMutations.html

[16] Goran Petrovic. 2021. Mutation Testing. https://testing.googleblog.com/2021/
04/mutation-testing.html

[17] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In Proceedings of the International
Conference on Software Engineering (ICSE’21).

[18] José Miguel Rojas and Gordon Fraser. 2016. Code Defenders: A Mutation Testing
Game. In 2016 IEEE Ninth International Conference on Software Testing, Verication
and Validation Workshops (ICSTW). 162–167. https://doi.org/10.1109/ICSTW.
2016.43

[19] Zalia Shams and Stephen H. Edwards. 2013. Toward Practical Mutation Analysis
for Evaluating the Quality of Student-Written Software Tests. In Proceedings of the
Ninth Annual International ACM Conference on International Computing Education
Research (San Diego, San California, USA) (ICER ’13). Association for Computing
Machinery, New York, NY, USA, 53–58. https://doi.org/10.1145/2493394.2493402

[20] Zalia Shams and Stephen H. Edwards. 2015. Checked Coverage and Object Branch
Coverage: New Alternatives for Assessing Student-Written Tests. In Proceedings
of the 46th ACM Technical Symposium on Computer Science Education (Kansas
City, Missouri, USA) (SIGCSE ’15). Association for Computing Machinery, New
York, NY, USA, 534–539. https://doi.org/10.1145/2676723.2677300

[21] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-Os in Test-Suite Reduction. In Proceedings of the 22nd

2022-02-22 12:45. Page 11 of 1–12.

https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/report-schema
https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/report-schema
https://doi.org/10.1145/1869542.1869567
https://doi.org/10.1109/ICSTW.2018.00024
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/2591062.2591164
http://www.jstor.org/stable/2312726
http://www.jstor.org/stable/2312726
https://doi.org/10.1145/2642937.2643008
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1109/SANER.2015.7081877
https://mull.readthedocs.io/en/0.14.0/SupportedMutations.html
https://testing.googleblog.com/2021/04/mutation-testing.html
https://testing.googleblog.com/2021/04/mutation-testing.html
https://doi.org/10.1109/ICSTW.2016.43
https://doi.org/10.1109/ICSTW.2016.43
https://doi.org/10.1145/2493394.2493402
https://doi.org/10.1145/2676723.2677300

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea James Perrea, Andrew DeOrio, Arjun Guha and Jonathan Bell

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Hong Kong, China) (FSE 2014). Association for Computing Machinery, New York,
NY, USA, 246–256. https://doi.org/10.1145/2635868.2635921

[22] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating test-suite reduction in real software evolution. In ISSTA.

[23] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and
combining test-suite reduction and regression test selection. In ESEC/FSE.

[24] Rebecca Smith, Terry Tang, Joe Warren, and Scott Rixner. 2017. An Automated
System for Interactively Learning Software Testing. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education
(Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery, New York,
NY, USA, 98–103. https://doi.org/10.1145/3059009.3059022

[25] Stryker 2022. Stryker Mutator. https://stryker-mutator.io/
[26] Stryker Supported Mutators 2022. Stryker Supported Mutators. https://stryker-

mutator.io/docs/mutation-testing-elements/supported-mutators/
[27] Dávid Tengeri, Árpád Beszédes, Tamás Gergely, László Vidács, Dávid Havas,

and Tibor Gyimóthy. 2015. Beyond code coverage - An approach for test suite
assessment and improvement. In International Conference on Software Testing,

Verication and Validation Workshops (ICSTW).
[28] Dávid Tengeri, László Vidács, Árpád Beszédes, Judit Jász, Gergõ Balogh, Béla

Vancsics, and Tibor Gyimóthy. 2016. Relating Code Coverage, Mutation Score
and Test Suite Reducibility to Defect Density. In 2016 IEEE Ninth International
Conference on Software Testing, Verication and Validation Workshops (ICSTW).
174–179. https://doi.org/10.1109/ICSTW.2016.25

[29] Mark Weiser and Joan Shertz. 1983. Programming problem representation in
novice and expert programmers. International Journal of Man-Machine Studies
19, 4 (1983), 391–398. https://doi.org/10.1016/S0020-7373(83)80061-3

[30] Chu-Pan Wong, Jens Meinicke, Leo Chen, João P. Diniz, Christian Kästner, and
Eduardo Figueiredo. 2020. Eciently Finding Higher-Order Mutants. Association
for Computing Machinery, New York, NY, USA, 1165–1177. https://doi.org/10.
1145/3368089.3409713

[31] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the
Testers?. In Proceedings of the 2018 ACM Conference on International Comput-
ing Education Research (Espoo, Finland) (ICER ’18). Association for Computing
Machinery, New York, NY, USA, 51–59. https://doi.org/10.1145/3230977.3230999

2022-02-22 12:45. Page 12 of 1–12.

https://doi.org/10.1145/2635868.2635921
https://doi.org/10.1145/3059009.3059022
https://stryker-mutator.io/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1016/S0020-7373(83)80061-3
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1145/3230977.3230999

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methods
	4.1 Mutation Testing Tools Used
	4.2 Datasets

	5 Evaluation
	5.1 RQ1: Is mutation score a good proxy for manually-seeded fault detection rate?
	5.2 RQ2: Is mutation score a good proxy for real student fault detection rate?
	5.3 RQ3: Can mutation testing be used to strengthen instructor-written test suites?
	5.4 RQ4: Are mutants a valid substitute for manually-seeded faults for evaluating student test suite quality?

	6 Discussion
	6.1 Implications for Researchers
	6.2 Implications for Educators
	6.3 Implications for Tool Builders
	6.4 Threats to Validity

	7 Conclusion
	References

