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Abstract—Mutation testing is a technique for evaluating the
efficacy of a test suite in identifying faults. However, non-
deterministic behavior, particularly flaky tests, reduces con-
fidence in mutation testing outcomes. Flaky tests introduce
uncertainty in linking the cause behind killed mutants, which
affects the trust in the assessment. When a flaky test “kills” a
mutant, does it reliably kill it, or does it only incidentally kill
it due to flakiness? This study is the first to directly examine
the impact of flaky tests on killing mutants, underscoring how
flaky tests can yield unreliable mutation results. Our analysis of
22 Java projects, previously examined for test flakiness, reveals
that 19% of mutants killed by these flaky tests result from the
flakiness introduced by at least one test. We examined the efficacy
of failure de-duplication approaches in distinguishing mutants
that were reliably killed from those that were not. We show
that this approach effectively approximates the true number of
mutants reliably killed, but with far less computational cost than
re-running each test for each mutant.

I. INTRODUCTION

Mutation testing has been widely used in software testing
research and practice as a method to evaluate the quality of
test suites [1][2]. Mutation testing measures test adequacy by
introducing small changes into the code and checking how
often tests observe these changes. The idea is to make these
changes automatically by applying mutation operators that
create variants of the original code: “mutants”. Then, the test
suite is run against each of these mutants. A mutant is “killed”
if all the tests pass on the original code but at least one of these
tests fails on the mutant; otherwise, it is called “survived.”
Each mutant that survives is either an instance of a possible
bug that should be detected by the test suite or an “equivalent
mutant” — one that is semantically equivalent to the original
program. To evaluate the test suite, the mutation score is
computed, representing the portion of the killed mutants to all
generated mutants. Mutation scores are also used in research
to evaluate testing techniques [2].

However, the outcome of mutation testing is reliable only
if the tests are deterministic, i.e., they are always consistent
with the same outcome. In the context of mutation, a mutant
is killed if and only if a test detects the behavioral change
induced by the mutation. However, tests could behave non-
deterministically, i.e., pass and fail, even running on the same
code [3]. Non-deterministic tests, known as flaky tests, have
been widely discussed [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. Flaky tests breaks

the trust of the testing outcome and may cause unreliable
evaluation in terms of the mutation testing.

Ideally, flaky tests would be detected and removed from test
suites (or fixed to no longer be flaky). However, in practice,
flaky tests remain in test suites even after being identified as
flaky because they can be valuable in detecting actual defects.
Hence, flaky tests in the test suite are another significant
concern for mutation testing. Since flaky tests can both pass
and fail, they could also have two different (unreliable) out-
comes for a mutant: survived and killed. Mutants that survive
may indicate the need to create additional test cases, while
a killed mutant raises confidence in the effectiveness of the
test cases detecting the mutants. In both scenarios, unreliably
killed mutants (which sometimes are killed and survived) can
lead to a misinterpretation of the mutation testing outcome.

Studies have shown the impacts of flaky tests on mutation
testing, particularly highlighting how mutation scores can vary
when considering unreliably killed mutants. Shi et al. show
that the mutation scores of their experiment vary by four
percentage points due to flaky tests [2]. Mutants killed by
flaky tests cannot be accurately assessed, leading to mutation
scores that may not truly reflect the actual mutation analysis.
Furthermore, it may require additional time to definitively
determine if a specific mutant is detected, considering the
possibility that the mutant was killed unreliably by flaky tests.

When developers utilize mutation testing, they might want
to know if a mutant was reliably killed. The state-of-the-art
approach for determining whether or not a mutant is reliably
killed is simply to rerun the entire mutation analysis process
multiple times. However, this approach is time-consuming, and
as far as we know, no study has measured how many mutants
are unreliably killed. This article describes an empirical study
of how often flaky tests unreliably kill mutants. Drawing on
our prior research and dataset that evaluated the efficacy of
failure de-duplication in identifying flaky test failures, we
study the efficacy of this promising approach to determine
whether mutants are reliably killed [20], [21]. Examining the
outcomes of 20 repetitions of mutation analysis on flaky tests
of 22 Java projects, we find that 19% of killed mutants are, in
fact, unreliably killed. We also found that our previous failure
de-duplication approach effectively detected unreliably killed
mutants. The approach detected 2,950 (out of 3,237 unreliably
killed mutants via rerun) with varied over-classification rates



(labeling reliably killed mutants as unreliable) across the stud-
ied projects. We show the result of our study in Section III.

II. STUDY

Unreliably killed mutants (killed by a flaky test in one run
and survived by the same test in another) reduce trust in
mutation analysis results. This implies uncertainty each time a
flaky test kills a mutant, leading to questions about whether or
not the mutant was reliably killed. Our goal is to increase de-
velopers’ confidence in the validity of killed mutants, ensuring
that these killed mutants result from the introduced changes
in the code rather than being influenced by flakiness causes.
Our study begins by showing how often a flaky test could have
unreliably killed mutants. Then, following our prior work [20],
we investigate the feasibility of using a lightweight failure
de-duplication-based approach to determine whether a given
mutant is unreliably killed.

A flaky test may fail for various reasons, including identify-
ing a fault. Hence, in mutation testing, flaky tests might appear
to kill a mutant for various reasons, including flakiness or
because they genuinely detect a bug introduced by the mutant.
Identifying the reasons behind test failures in mutation testing
is important for counting the number of reliably killed mutants
and obtaining more accurate mutation scores.

By relying on the definition of a flaky test failure, we
can construct a procedure to determine which mutants are
reliably killed and which are not. Specifically, since flaky test
failures occur non-deterministically, a killed mutant can be
confirmed as unreliable by rerunning the test multiple times.
If different outcomes (passing and failing) are observed, the
killed mutant is confirmed as unreliable. However, rerunning
tests is a resource-intensive process, and it becomes even more
costly when running the entire test suite against all mutants.
As mutation testing itself could be expensive at some scales
of projects, determining flaky mutants should not introduce an
additional overhead cost.

Our previous work discusses the ability to distinguish be-
tween flaky and actual failures of flaky tests using failure
logs [20]. We compare new failures with prior flaky failures
using the text-matching de-duplication approach (comparing
stack traces to find matches between two given failures). We
found that flaky failures are repetitive, meaning that a test,
once it fails due to flakiness, is most likely seen previously if
the test has a prior history of flaky failures.

In our prior work detecting flaky failures [20], we compare
test failures with previous flaky and true failures (with the
same code under test revision). We have not explored whether
the proposed approaches could aid mutation testing by de-
tecting flaky tests that kill mutants unreliably. The result of
our prior work encourages us to investigate the ability of our
approaches to detect unreliably killed mutants by using the
original failures of the flaky tests.

A. Study Design

Previous studies have explored several de-duplication-based
approaches that have been used in distinguishing between

flaky and true failures, as detailed in [22] and our study [20].
The core idea behind these approaches is that flaky failures
might have different attributes than true failures, and hence,
an approach that can match similar failures to each other
may also be able to distinguish flaky from true failures. Our
prior work compared failure de-duplication approaches based
on machine learning and simple text matching [20]. In this
work, we examine only the text-matching approach, as our
prior work identified it as effective and easy to deploy. Details
about the text-matching approach are described in our prior
work [20], and we reuse the implementation from our prior
artifact [23]. We use these scripts to attempt to match the
failure logs from killed mutants against known flaky failures.

We conduct our study using our previously published
dataset [21] that contains both: 1) confirmed flaky failure logs
from flaky tests (drawn from the FlakeFlagger dataset [5]), and
2) 20 sets of mutation results of these flaky tests. However,
this dataset only contains mutation analysis results for tests
previously found to be flaky in these projects and does not
contain mutation analysis results for the entire test suite.
Hence, our study design will not support conclusions regarding
an overall impact on a test suite’s mutation score. Instead,
we focus our research on understanding the efficacy of a
lightweight approach to determine whether a mutation result
should be trusted or potentially ignored due to flakiness.
Further details regarding the limitations of this study are
discussed in Section IV.

To evaluate the performance of the approach, we compare
the approach findings against the baseline approach rerun,
which is also provided in our prior study dataset. Due to
the challenge of obtaining the total number of killed mutants
(given that mutation analysis is based on a subset of flaky
tests), it was hard to build a confusion matrix to evaluate the
approach. Instead, we assess the performance by quantitatively
the number of unreliably killed mutants detected by the
approach versus rerun.

III. RESULTS

Based on the conducted study, our primary objective is to
address the following main research questions:

• RQ1: How often does a flaky test cause unreliably
killed mutants? In this RQ, our goal is to show how
often mutants can be killed in an unreliable way and
discuss if the portion of unreliably killed mutants is a
significant threat to the validity of the mutation analysis.

• RQ2: How effectively can de-duplication failure ap-
proaches detect unreliably killed mutants? We inves-
tigate using duplication failure approaches in detecting
which mutant is reliable or unreliable.

A. RQ1: How often does a flaky test cause unreliably killed
mutants?

We examined the mutation dataset from our prior study [21],
which includes 22 Java projects, where each confirmed flaky
test was run 20 times against all mutants. The status of each



TABLE I
NUMBER OF MUTANTS AND THEIR STATUS PER PROJECT

This table displays the number of flaky tests in each project and the total
number of mutants (Column Total). The columns “Killed Mutants” show the
total number of any mutant that is killed at least once, followed by mutants
that are reliably killed, (unreliably) killed, and mutants that are reliable by
some tests and not others. The column “Per Test” shows how many flaky

tests have never caused a mutant to be unreliably killed (never), followed by
flaky tests that cause at least one unreliably killed mutant.

Total Killed Mutants Per Test
Project TestsMutants TotalReliablyUnreliablyBoth never [1:n)]

activiti 30 15,574 3,989 2,819 849 321 5 25
okhttp 99 5,063 2,239 1,501 483 255 19 80
alluxio 114 16,595 1,865 1,739 63 63 38 76
ambari 51 6,183 1,304 1,302 1 1 49 2
logback 20 7,304 1,194 885 243 66 13 7
wildfly 18 1,317 1,046 1,046 0 0 18 0
httpcore 22 5,482 1,003 960 32 11 6 16
hbase 22 22,056 749 518 231 0 19 3
io-undertow 7 16,305 716 707 6 3 5 2
java-webSocket 23 1,476 516 137 278 101 0 23
wro4j 14 3,662 423 414 7 2 12 2
spring-boot 12 7,929 422 421 1 0 11 1
hector 33 1,560 359 358 1 0 32 1
orbit 7 1,183 311 175 107 29 0 7
handlebars.java 1 1,842 182 147 35 0 0 1
achilles 2 2,701 154 154 0 0 2 0
ninja 1 1,603 147 120 27 0 0 1
http-request 18 468 109 109 0 0 18 0
zxing 1 12,499 84 76 8 0 0 1
elastic-job-lite 3 1,726 66 66 0 0 3 0
commons-exec 1 472 60 59 1 0 0 1
assertj-core 1 4,376 30 18 12 0 0 1

22 Java Projects 500 137,376 16,968 13,731 2,385 852 250 250

mutant was recorded based on these 20 runs. Our follow-
up analysis involved processing the mutation reports per test
to determine the number of reliably and unreliably killed
mutants. Table I presents the results of this analysis per project.

Taking the project activiti as an example from Table I, we
identified 30 flaky tests that had caused at least one mutant
to be killed. Out of the 15,574 mutants in this project, we
found 3,989 killed mutants, which corresponds to 25% of the
total number of mutants in this project. The column “Killed
Mutants” shows that there are 2,819 mutants that were always
reliably killed by any of the 30 tests, 849 mutants that were
always unreliably killed, and 321 mutants that were reliably
killed by some tests and unreliably by others. The column
“Per Test” indicates how many tests out of 30 were never
responsible for causing a mutant to be unreliably killed (never)
and were only responsible for at least one mutant being
unreliably killed ([1:n)).

Overall, we identified 3,237 unreliably killed mutants (the
sum of the columns “Unreliably” and “Both”) and 13,731
reliably killed mutants out of a total of 137,376 mutants across
the 22 Java projects. This means that approximately 19% of the
mutants killed by at least one flaky test were unreliably killed.
It is challenging to assert how this might impact the overall
mutation analysis, as we only consider mutation results for
known flaky tests. However, the count of flaky mutants could
be considered a minimum number based on the reported result
per project, assuming a mutant is unreliably killed if it was

killed and survived by at least one test.
It is important to emphasize that half of the 500 studied

flaky tests are linked to causing at least one mutant to be
unreliably killed. This implies that half of the flaky tests
reported in [5] could not be replicated in our studied dataset
[21]. Flaky tests generally have reproducibility challenges,
especially when executed across different run environments.
Hence, these factors may influence some flaky tests, leading
to not capturing all flaky tests in the studied dataset. We further
analyze flaky tests that have not resulted in any mutant being
unreliably killed. In wildfly, where no unreliably killed mutants
were observed, all the flaky tests were initially flaky, sharing
the same exception: RuntimeException. In other projects, out
of 33 reported flaky tests in hector, 32 were flaky due to
HCassandraInternalException, and none of these flaky tests
were responsible for any of the unreliably killed mutants.
Similarly, in ambari, 47 flaky tests exhibited flakiness due
to ProvisionException, and none of them were responsible for
any of the unreliably killed mutants.

The percentage of unreliably killed mutants compared
to reliably killed mutants showed variation across different
projects. Four projects, with a total of 41 flaky tests, had
zero unreliably killed mutants. On the other hand, seven other
projects demonstrated that at least 25% of the killed mutants
were labeled as unreliably killed. Our findings revealed that
a significant portion, around 36%, of the total number of
unreliably killed mutants originated from a single project
named activiti. In the case of java-websocket, there were
more unreliably killed mutants than reliable ones, and every
studied flaky test caused at least one mutant to be unreliably
killed. It is challenging to draw a conclusive percentage for
unreliably killed mutants in a single project, as this metric can
be influenced by various factors such as the run environment.

The columns “Unreliably” and “Both” present the counts
of unreliably killed mutants from two perspectives: 1) killed
mutants that any test has reliably killed, and 2) killed mutants
that were at least reliably killed by at least one flaky test.
While the number of mutants marked exclusively as unreliable
(column “Unreliably”) is higher than “Both,” it is important to
recognize that this ratio might change when also considering
mutation results of non-flaky tests. In the context of this study,
our idea is to show that developers should consider that the
presence of flaky tests in mutation analysis could result in
unreliably killed mutants by at least one test.

Summary. We observed that about half of the flaky tests
were responsible for unreliably killed mutants, constituting
19% of the killed mutants across the 22 Java projects. The ratio
of unreliably killed mutants could vary from one project to
another. Hence, this highlights the significance of identifying
which killed mutant was reliably killed and which is unreliably
killed for achieving better mutation analysis.

B. RQ2: How effectively can de-duplication failure ap-
proaches detect unreliably killed mutants?

Table II shows the performance of the de-duplication ap-
proach (text-based matching [20]) in detecting unreliably



TABLE II
THE EFFICACY OF DETECTING FLAKY MUTANTS.

“Rerun” columns show the number of reliably and unreliably killed mutants after running the tests 20 times. “De-duplication” shows how many mutants are
determined to be reliably or Unreliably killed, based on the de-duplication approach described in [20]. Finally, “De-duplication Performance Against Rerun”

shows the efficacy of the de-duplication approach compared to the rerun ground truth.

Total Rerun Deduplication Deduplication Performance Against Rerun

Project Test Mutants Killed Reliably Unreliably Reliably Unreliably Only Rerun Rerun & Deduplication Only Deduplication

activiti 30 15,574 3,989 2,819 1,170 2,162 1,827
okhttp 99 5,063 2,239 1,501 738 1,549 690
java-webSocket 23 1,476 516 137 379 14 502
logback 20 7,304 1,194 885 309 676 518
hbase 22 22,056 749 518 231 379 370
orbit 7 1,183 311 175 136 156 155
alluxio 114 16,595 1,865 1,739 126 1,536 329
httpcore 22 5,482 1,003 960 43 772 231
handlebars.java 1 1,842 182 147 35 131 51
ninja 1 1,603 147 120 27 112 35
assertj-core 1 4,376 30 18 12 30 0
wro4j 14 3,662 423 414 9 406 17
io-undertow 7 16,305 716 707 9 288 428
zxing 1 12,499 84 76 8 80 4
ambari 51 6,183 1,304 1,302 2 1,298 6
commons-exec 1 472 60 59 1 57 3
spring-boot 12 7,929 422 421 1 422 0
hector 33 1,560 359 358 1 347 12
achilles 2 2,701 154 154 0 148 6 No Detected Flaky Mutants
wildfly 18 1,317 1,046 1,046 0 1,046 0 No Detected Flaky Mutants
elastic-job-lite 3 1,726 66 66 0 66 0 No Detected Flaky Mutants
http-request 18 468 109 109 0 102 7 No Detected Flaky Mutants

22 Total Projects 500 137,376 16,968 13,731 3,237 11,777 5,191

killed mutants compared to rerun results. Using activiti as
an example, 30 flaky tests were run against 15,574 mutants,
resulting in 3,989 killed mutants. Of these, 1,170 were labeled
as unreliably killed by at least one flaky test using rerun
(with 2,819 labeled as reliable). The de-duplication approach
identified 1,827 killed mutants as unreliable and 2,162 as
reliable. In the column “Deduplication [22], [20] Performance
Against Rerun,” the bar plot uses three colors: orange bar
shows unreliably killed mutants confirmed by rerun but not
detected as unreliably killed by the approach. The green bar
represents unreliably killed mutants confirmed by both rerun
and the approach. In contrast, the red bar indicates mutants
detected as unreliably killed by the approach but not reported
as unreliably killed by rerun.

When comparing the outcomes of the de-duplication ap-
proach with those of rerun, we examine both false positives
(labeled as unreliably killed but were reliably killed) and false
negatives (marked as reliably killed but were unreliably killed).
The stacked bar charts in Table II show false positives in red
and false negatives in orange. Taking the wro4j results as an
example, out of 423 total mutants killed, nine were confirmed
as unreliable using rerun (which provides our ground truth).
By the de-duplication approach, 17 killed mutants (out of 423)
were categorized as unreliable. Of the 17 labeled as unreliable
by the matching approach, 9 are true positives (green bar).
However, the remaining eight mutants initially classified as
unreliable were found to be reliable by rerun. Considering the
approach in wro4j, the portion of unreliably killed mutants can
vary by as much as 17, indicating the lowest anticipated ratio
of reliable mutants.

The rerun approach (our ground truth) identified 3,237
unreliably killed mutants, as shown in the bottom row of
Table II. Among these, 2,950 unreliable mutants were also
detected as unreliable by the de-duplication approach, while
287 unreliably killed mutants were misclassified as reliable.
The approach misclassified 2,241 reliable killed mutants as
unreliable, resulting in 5,191 unreliable mutants by the de-
duplication approach. The ratio of the unreliably killed mutants
identified by the approach to the total number of killed mutants
may differ if the total number of tests represents the entire test
suite and not just flaky tests. Hence, we could not accurately
assess the approach’s accuracy (further details in Section IV).

Overall, the approach was able to identify 91% of the
confirmed unreliably killed mutants (2,950 out of 3,237) while
mislabeling 287 killed mutants. The approach misclassifies
mutants as unreliable and killed in most projects at different
rates (represented by the red bar). The approach did not detect
unreliably killed mutants in assertj-core and spring-boot.
Among the studied projects, 7 had at least 100 unreliably killed
mutants. The de-duplication approach effectively detected the
majority of unreliably killed mutants in these projects (2,839
out of 3,089). However, alluxio and okhttp have a higher
number of misclassified unreliably killed mutants, as indicated
by the orange bar.

We found some of the unreliably killed mutant failures
not previously detected in test flaky failures, represented by
the orange bar in each project. For instance, in alluxio, the
exception TTransportException occurred 12 times (out of 55
unreliably killed mutants that the approach could not detect).
In okhttp, one exception named NoSuchFieldError appeared in



60% of the unreliably killed mutants that exclusively occurred
in unreliably killed mutants. In the case of assertj-core, we
identified only one flaky failure (from a single flaky test) that
did not match any of the killed mutants, resulting in zero
unreliably killed mutants detected by the approach.

The approach appeared to over-misclassify mutants as un-
reliable in four projects, such as httpcore (231 VS 43) and
undertow (428 VS 9). With closer inspection of these projects,
we found that the majority of these misclassified mutants fail
due to AssertionError as a failure exception (75% of unreliably
killed mutants in httpcore and 60% in undertow). In our prior
work that aimed to separate true failures from flaky failures,
we also found that failures involving an AssertionError were
likely to be misclassified [20].

The ratio of falsely labeled mutants as unreliably killed by
the approach to the total number of reliably killed mutants is
relatively low in most projects. However, in specific projects
like undertow, the ratio exceeds 50%. This ratio is crucial
for developers to consider when deciding whether to utilize
the approach. The false positive rate, corresponding to the
red bar in Table II, can establish a lower boundary for the
potentially killed mutants to be considered unreliable. This
boundary enhances confidence in the accuracy of the total
number of reliable killed mutants.

As discussed earlier, rerunning the tests on every mutant is
extremely expensive. On the other hand, the cost of the ap-
proach to detect unreliably killed mutants relies on leveraging
the prior failures of the flaky tests. The main drawback of
the approach is that it lacks historical flaky failure context.
The approach might be considered as a metric to organize
rerunning test mutant pair by prioritizing running tests that
have more unreliably killed mutants by the approach.

Summary. We found that the approach was effectively able
to determine at least 91% of the unreliably killed mutants.
The findings in most projects suggest that developers could
consider that the unreliably killed mutants can be detected
using the text-matching approach.

IV. DISCUSSION AND THREATS TO VALIDITY

Our study design is subject to several limitations that
threaten the validity of our conclusions.

Collecting a large, ground-truth dataset of unreliably killed
mutants is highly time-consuming, requiring repeatedly col-
lecting mutation analysis for a project. The dataset we utilized
is from our prior study [20], where mutation analysis served
as a stand-in for actual failures, and de-duplication-based
approaches were used to detect flaky failures. During our
analysis in the prior work, we excluded any mutant that was
not reliably killed. This work includes these unreliably killed
mutants to see how the deduplication approach could detect
them. However, this dataset only includes the mutation analy-
sis results on known flaky tests. It does not provide a complete
mutation analysis for each test suite, so the performance of
the deduplication approach may be different on other tests
within the same test suites. Without mutation results for all
tests, it is not possible for us to measure the mutation score

directly or to measure the impact of flaky tests on the mutation
score. However, the goal of our study was not to evaluate the
impact of flaky tests on mutation scores (as Shi et al [2]), but
to study the efficacy of failure deduplication in determining
which killed mutants were unreliably killed.

More reruns of more tests and mutants will undoubtedly
result in a larger dataset, and we believe this will be the
basis of future work in flaky tests and mutation analysis. A
more rigorous evaluation would consider all tests and report
additional metrics, such as a complete confusion matrix. We
explicitly avoid reporting a confusion matrix for each project
to underscore the sensitivity of our results to the limited set of
tests studied and call for future research to study these methods
in other contexts.

We studied our previously proposed failure deduplication
approach [20] and inherited the same limitations of that
underlying approach. For example, different test suites may
have various failure symptoms, making the approach more or
less effective. Failure logs might also be merged from various
runtime environments, complicating the analysis. Our results
may or may not generalize to other projects.

Test-mutant pair evaluation could be more informative in
mutation analysis. The deduplication approach we use in our
study labels each mutant as an unreliably killed mutant if it is
unreliably killed by at least one flaky test. It is important to
mention that some unreliably killed mutants are reliably killed
by other tests, as shown in the column “Both” in Table I. The
number of times a mutant is unreliably killed could assist the
researchers and developers to prioritize tests during mutation
testing. Due to the limitation of the dataset, we consider this
also a main future work to enhance the mutation analysis by
considering the failure deduplication approach as a standard
to evaluate test-mutant evaluation.

V. RELATED WORK

Flaky tests have been widely discussed in software testing
research community [4], [5], [6], [7], [8], [9], [10], [11],
[12]. In the context of mutation analysis, there are significant
research efforts about flaky tests in mutation testing [2], [24],
[25], [26], [27]. Du et al. studied the reasons behind test
failures contributing to mutation kills in mutation testing [24].
While they do not explicitly include flakiness as a cause, they
acknowledge that flaky tests may exist in the projects they
analyze in their experiment. They view this as a significant
threat to the validity of their results. Vercacmmen et al. delve
into the integration of mutation testing with integration testing
and emphasize that flaky tests are a significant concern that
needs to be addressed [25].

Shi et al. discuss the effect of having flaky tests in the test
suite during mutation testing [2]. Shi et al. focused on non-
deterministic test coverage in their experiment with 30 Java
projects. They found that 22% of statements exhibited incon-
sistent coverage when test suites were repeatedly executed.
They observed that due to the flakiness in test coverage, about
5% of mutants had an unknown status, leading to uncertainty
in the mutation score. A key limitation of this prior work is



that the authors did not attempt to rerun killed mutants to
see whether or not they were reliably killed. Assuming all
“unknown” mutants were killed, the mutation score would be
82%, and assuming they all survived, the score would be 78%.
This underscores how non-deterministic coverage significantly
affects the reliability of mutation scores as a measure of
test effectiveness. In our case, outlined in Section IV, we
encountered challenges in computing mutation scores. We also
confirm unreliably killed mutants by the reported rerun result,
a significantly stronger ground truth.

VI. CONCLUSION

We found that 3,237 of mutants killed by flaky tests in 22
open-source Java projects were unreliably killed, correspond-
ing to 19% of all killed mutants. unreliably killed mutants
can provide false confidence in a test suite’s fault-finding
ability. Recognizing the difficulties of rerunning the entire
test suite for every mutant, our research demonstrates that
failure de-duplication effectively identifies unreliably killed
mutants. Using this approach, we found that it approximates
the number of reliably killed mutants and was able to detect
up to 91% of the mutants categorized as unreliable in their
killing status. Within the limitation we discuss, our findings
could encourage research to address this concern further for
more reliable mutation analysis.
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