Accelerating Maven by Delaying Dependencies

Jonathan Bell*, Eric Melskif, Gail Kaiser* and Mohan Datta‘[rey:ffr
*Department of Computer Science, Columbia University, New York, NY 10027, {jbell,kaiser}@cs.columbia.edu
TElectric Cloud, Inc, San Jose, CA 95114, {ericm,mohan} @electric-cloud.com

Abstract—Modular build systems (such as Maven) may sim-
plify build maintenance, but significantly reduce opportunities
for parallelism where they may be most helpful: when running
tests. If tests are contained in each module, and modules contain
dependencies on each other, their tests can not run in parallel.
This poster will present a technique for achieving significantly
greater parallelism in running the tests of Maven-built Java
projects, cutting build times in half in our case study.

I. EXTENDED ABSTRACT

Slow builds are a perpetual nuisance to the software release
lifecycle: they reduce the frequency with which builds can
occur, delaying build results from getting back to developers
and build engineers. In our previous work, we determined that
build times of Java projects are often dominated by the exe-
cution of tests, and presented two approaches to significantly
reduce the time necessary to run entire test suites by cutting
time spent isolating tests, and safely parallelizing them [1].

We have discovered a new way to accelerate the testing
phase of builds (specifically, Java builds performed with
Maven) even further by introducing a new level of parallelism,
allowing tests to begin executing before projects are fully built
without introducing a risk of build failure or nondeterminism.
While there have been attempts to support fully parallel Java
builds (e.g., Maven’s —T' feature), realizing high degrees
of parallelism remains challenging due to difficult-to-break
dependencies. Maven is a modular build system, allowing
projects to consist of multiple sub-modules, each of which
may depend on other modules. When a multi-module Maven
project is built, each module goes through the entire Maven
build lifecycle (compile, test, package, etc.)

We measured the amount of time spent running tests in
10 large open source java projects (building on Amazon’s
EC2 with m3.medium instances), finding that tests are often
distributed among many modules. Table I shows the results
of this study: most projects have many modules, and many of
those projects have tests.

We have observed that while one module may depend on the
code or other artifacts generated by a previous module, they
do not rely on the execution of the tests of a prior module.
However, due to Maven’s modular nature, it is impossible to
specify that a single component of a module (for instance, its
tests) should run in parallel with other modules. Therefore,
we have built a plugin for test execution in Maven that delays
the dependency between each module’s test phase, allowing
tests to execute in parallel to the build of other modules. This
way, Maven considers individual modules as fully built (for the
purpose of dependency resolution) even if that module’s tests

Project Build Time (mins) Testing Time Modules

w/ Tests
titan 380.77 94.99% 13/15
camel 359.57 84.68% 195/271
mule 198.87 92.81% 57/72
spring-data-mongodb 123.17 99.32% 3/3
cdap 110.62 97.15% 19/33
hadoop 108.03 97.78% 27136
opennms 120.73 76.89% 122/220
ks-final-milestone 124.23 71.08% 17/46
mongo-java-driver 74.92 99.35% 171
netty 67.63 92.24% 16/19

TABLE I

TESTING STATISTICS FOR LARGE MAVEN PROJECTS. SHOWS THE BUILD
TIME, PERCENT OF BUILD TIME RUNNING TESTS, AND THE NUMBER OF
MAVEN MODULES OF EACH PROJECT THAT HAVE TESTS.

haven’t finished running yet. Since the dependence is delayed
(rather than dropped), Maven still executes the tests for each
module, and won’t consider the build overall complete until
the tests finish executing.

We applied this technique to build a proprietary, internal
system that had previously taken 20 minutes to build, even
when utilizing Maven’s provided parallelism features. After
applying our delayed dependency technique, the system took
only 8 minutes to build, using the same number of processor
cores as Maven’s automatic parallelism provided. We are
continuing to refine this prototype system and are actively
working on applying it to new projects to gain more evidence
of its usefulness.

This poster will describe in greater detail the mechanism
that we use to delay module dependencies on test execution,
as well as further results showing the applicability of this
technique.

ACKNOWLEDGEMENTS

Bell and Kaiser are members of The Programming Systems
Laboratory, which is funded in part by NSF CCF-1302269,
CCF-1161079, and NIH US54 CA121852. Bell was partially
supported by Electric Cloud while completing this work.

REFERENCES

[1] J. Bell, E. Melski, M. Dattatreya, and G. Kaiser. Vroom: Faster Build
Processes for Java. In IEEE Software Special Issue: Release Engineering.
IEEE Computer Society, March/April 2015. To Appear. Preprint: http:
/ljonbell.net/s2bel.pdf.

