
2 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

FOCUS: RELEASE ENGINEERING

Vroom: Faster
Build Processes
for Java
Jonathan Bell, Columbia University

Eric Melski and Mohan Dattatreya, Electric Cloud

Gail E. Kaiser, Columbia University

// To speed up testing, researchers combined two

complementary approaches. Unit test virtualization

isolates in-memory dependencies among test cases.

Virtualized unit test virtualization isolates external

dependencies such as files and network ports

while long-running tests execute in parallel. //

SLOW SOFTWARE BUILD cycles
substantially hinder continuous in-
tegration during development. They
can be an even more significant nui-
sance for continuous delivery and
other release processes. As a com-
plex software system evolves and its
compilation and packaging process
becomes more complicated, building
changes from a process that develop-
ers perform frequently on their desk-
top machines after every small code
edit, to one performed nightly on a

dedicated build machine, to one that
can’t even be performed in its entirety
overnight. We aim to significantly re-
duce build time, with a sufficiently
general solution applicable to both
full (“clean”) and incremental builds.

We decided to reduce building
time by reducing testing time. To
do this, we developed a system that
combines two approaches. The first
approach, unit test virtualization,
isolates in-memory dependencies
among test cases, which otherwise

are isolated inefficiently by restart-
ing the Java Virtual Machine (JVM)
before every test. We call our imple-
mentation of this approach VMVM
(Virtual Machine in the Virtual Ma-
chine, pronounced “vroom vroom”).
The second approach, virtualized
unit test virtualization, isolates ex-
ternal dependencies such as files and
network ports while long-running
tests execute in parallel. We call our
implementation of this approach
VMVMVM (Virtual Machine in
a Virtual Machine on a Virtual
 Machine—“vroom vroom vroom”).

The Dominance of
Testing Time
We’ve found that the testing phase
for real-world Java-based build pro-
cesses often dominates compilation,
packaging, and other traditional
contributors to the build time. So,
we focus on reducing the clock time
needed to run test suites. Some of
our industry partners report that
they’ve been forced to remove test-
ing from their regular build process
as a stopgap solution. For instance,
one partner reported that its Java-
based build process took about eight
hours—long enough to be problem-
atic even for nightly build cycles.

To obtain concrete data on this
problem, we measured the compila-
tion, test, and other build phases for
20 popular open-source Java proj-
ects. We found the situation could be
even worse than in our partner’s an-
ecdote: the testing phase took more
than four times as long, on average,
as the rest of the build (see Figure 1).

Unacceptably long test cycles
aren’t new. Previous research tried to
reduce the time to run test suites.1 It
focused on

• selecting the smallest subset of
relevant tests deemed most likely

cover image here

 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 3

to find the faults for a given
change set or

• reordering tests to execute those
more likely to fail sooner.

The former approach can find only
the defects affected by that change
set. The latter approach might find
defects sooner but only reduces the
total time needed if testing halts af-
ter a time-out.

Furthermore, the approach that
reduces the number of tests in a suite
isn’t sound—there’s always a risk
that some tests are deemed irrelevant
when they aren’t. (In the general case,
it’s undecidable whether one test
suite is equivalent to another.) So, we
seek to reduce testing time while still
executing the entire test suite, with
no loss of fault-finding ability.

Isolation Inefficiency
We studied the testing process that
many Java projects employ, using the
popular JUnit framework. JUnit can
be used for integration and full sys-
tem end-to-end tests as well as unit
testing. We observed a common yet
inefficient practice: each test exe-
cuted in a fresh process—that is, in
its own Java Virtual Machine (JVM).

An important implicit assump-
tion in testing is that the result of
test T shouldn’t depend on the ex-
ecution of some previous test Tp.
This assumption of independent test
cases, a part of the controlled regres-
sion testing assumption (applicable
to other kinds of testing besides re-
gression), is difficult to achieve ef-
ficiently.2 Ideally, it’s enforced with
pretest setup methods and post-test
tear-down methods.

However, for complex software
(for example, software that uses
black-box third-party APIs), ensur-
ing these methods’ correctness can
be particularly difficult. The testing

code might be buggy or incomplete,
just like the application code being
tested. Moreover, testers might miss
resetting the state of some part of the
system under test (and hence cause
an unexpected dependency between
one test and another). In this case,
the results can range from false posi-
tives (where tests incorrectly raise an
alarm when the code is correct) to,
what’s worse, false negatives (where
tests fail to raise an alarm despite er-
rors in the code).

So in practice, each test often ex-
ecutes in a separate process, which
ensures that the tests are isolated
(and don’t have hidden dependen-
cies), greatly simplifying writing the
pretest and post-test methods. This
isolation comes at a significant cost.
We studied the overhead of executing
each test in its own process, relative
to the time needed to simply execute
each test in the same process, for the
20 Java projects we mentioned ear-
lier. We found it to be astonishingly
high: on average, 618 percent (and
up to 4,153 percent!).

Completely removing this iso-
lation from the testing process in
these applications would reduce ap-
plication build time a net 56 percent.
However, removing test isolation
can have disastrous consequences on
test suite correctness. In our study,
we found 70 test cases that passed
in isolation yet failed unexpectedly
without it. Even worse, there are re-
ports of test cases that erroneously
pass when not isolated (despite a
defect in the application under test)
and fail only under isolation.

VMVM and VMVMVM
To combat this overhead while main-
taining test case isolation, we devel-
oped unit test virtualization,3 which
automatically and efficiently iso-
lates the side-effects of unit tests and

other tests. The system reinitializes
only that part of memory written by
some previous test that could be read
by the next test (determined by static
and dynamic analysis), rather than
restarting the entire process to re-
initialize the entire in-memory state.
This provides the same level of isola-
tion that running each test class in its
own JVM would provide. (Multiple
test methods in the same test class
still can have dependencies, which
current versions of JUnit allow.)

We implemented our approach for
Java in VMVM. As we show later,
when we applied VMVM to the test
suites of the 20 projects, it achieved
an impressive average net speedup of
the entire build time (compared to
running each in a separate process).
Because all tests executed, no loss of
fault-finding ability occurred.

VMVM works well for speeding
up test suites when the overhead of
restarting the JVM between tests
(usually a constant 1 to 2 seconds)
constitutes a significant portion of
the testing time. However, in cases
with only a few test classes that are
very long (for example, 10 seconds

Testing
78%

Compiling
17%

Other 5%

FIGURE 1. How build time is spent.

By reducing testing time, we aim to

significantly reduce build time, with a

sufficiently general solution applicable to

both full and incremental builds.

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

each), removing the overhead of re-
starting the JVM and adding the
overhead of our dynamic analysis
can slow down testing.

In those latter cases, we take a
complementary approach to reducing
clock time: we leverage modern multi-
core hardware to execute multiple test
cases in parallel. A simple approach
to parallelizing test cases (offered by

the most recent versions of Ant and
Maven) uses a controller thread to
distribute test cases in round-robin
manner to several workers execut-
ing in parallel on the same machine.
(This simply spawns extra processes
running in the same directory.) How-
ever, of our 20 projects, five had tests
fail erroneously with this paralleliza-
tion, with test cases racing for access
to shared resources (for example, files
or sockets). To safely execute multiple
tests simultaneously, each must have
its own virtual file system and net-
work interface.

So, we developed virtualized
unit test virtualization, which lever-
ages a distributed architecture. Each
worker process executes in a distinct
conventional VM (as in VMware
or VirtualBox), with its own vir-
tual file system and other system re-
sources. This architecture is effective
at simultaneously executing multi-
ple tests that use local files and net-
work resources (for example, bind-
ing to a socket and connecting back
to that socket). However, it doesn’t
address test cases that interact with
remote servers and databases; such

interactions are usually avoided dur-
ing testing and didn’t occur in the
test suites we examined. As we men-
tioned before, we call our implemen-
tation for Java VMVMVM.

The result is an integrated two-
tier system that reduces the build
time for Java projects by reduc-
ing testing time in two ways. First,
VMVM reduces the time between

short test cases that’s taken to isolate
the test cases. Second, VMVMVM
reduces the total time for long test
cases by letting them run in parallel
(and using VMVM internally so that
the same JVM can be used for the
sequence of test jobs run in the same
worker VM).

The Problem Scope
To empirically ground our efforts
to reduce build time, we asked three
main questions:

• Does testing take a significant
portion of build time?

• Do developers isolate their test
cases?

• If they do, is this isolation suffi-
cient to let tests run in parallel?

To answer these questions, we
downloaded the 1,200 largest free
and open-source Java projects from
the indexing website Ohloh (now
Open Hub; www.openhub.net).
From those, we selected the proj-
ects that executed JUnit tests dur-
ing their Ant- or Maven-based
builds. We tried to build all the 591

projects that use JUnit but found
that only about 50 worked out of
the box without significant configu-
ration (for example, worked by run-
ning a single command such as ant test
or mvn test). From those, we selected
the 20 projects we’ve been talking
about. This was a manageable set
of projects that ensured a diversity
of widely used, recognizable proj-
ects (for example, the Apache Tom-
cat JavaServer Pages server) and
smaller projects (for example, JTor,
an alpha-quality Tor implementation
with a very small contributor base).

Measuring Testing Time
To answer the first question, we ex-
ecuted the entire build process for
each application (using its Ant or
Maven build script), recorded the
time each build step took, and ag-
gregated the time for all the testing
(junit) steps and all the compilation
(javac) steps. We executed this pro-
cess 10 times, averaging the results.

Table 1 shows the results, which
roughly matched our expectations
based on our anecdotal industry
evidence. For this study, we ensured
that all tests were isolated in their
own process; those projects that al-
ready performed this isolation are
bold in Table 1. Testing took on av-
erage 78 percent of the build time.

Isolating Test Cases
To answer the second question, we
statically analyzed the test scripts
for the 591 projects to determine
the percentage of them that executed
each test case (“test class” in JUnit
terminology) in its own process. Of
those projects with the most test
cases (over 1,000 test cases; 47 to-
tal), 81 percent executed each test in
its own process. Overall, 41 percent
of all the projects executed each test
in its own process.

Pull Quote

 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 5

Test isolation is necessary for
many complex software systems.
Otherwise, the testers would need
to write additional test cases for the
pretest setup and post-test tear-down
methods, to test the tests. Kıvanç
Muşlu and his colleagues pointed
out a perfect example of what can

happen when tests aren’t isolated.4
They found that a fault that took
four years to resolve (Apache Com-
mons CLI-26, 186 and 187) could
have been detected immediately
(even before users reported it) if the
project’s test cases had been isolated.

The problem was that several test

cases checked the Apache library’s
behavior under varying configura-
tions, and their setup stored these
configurations in a static field. How-
ever, other tests assumed that the
system under test would be clean,
in a default configuration. But some
of the configuration-modifying tests

TA
B

L
E

 1 The build speedup for 20 popular open source Java projects.*

Project
No. of

classes
Test LOC ×

1,000
Build time spent

testing (%)

Build speedup (%)

VMVM† VMVMVM‡

Apache Commons Codec 46 17.99 91 83 85

Apache Commons Validator 21 17.46 93 31 34

Apache Ivy 119 305.99 95 70 86

Apache Nutch 27 100.91 92 13 16

Apache River 22 365.72 74 41 43

Apache Tomcat 292 5,692.45 99 28 68

betterFORM 127 1,114.14 98 73 90

Bristlecone Performance Test Tools 4 16.52 94 –2 12

btrace 3 14.15 49 23 –20

Closure Compiler 223 467.57 93 63 75

Commons IO 84 29.16 96 52 85

FreeRapid Downloader 7 257.70 43 43 41

gedcom4j 57 18.22 98 57 75

JAXX 6 91.13 48 45 34

Jetty—Java HTTP Servlet Server 6 621.53 64 18 16

JTor 7 15.07 61 64 63

mkgmap 43 58.54 88 59 68

Openfire 12 250.79 32 32 31

Trove for Java 12 45.31 56 60 59

Universal Password Manager 10 5.62 97 95 70

Average 56 475.30 78 47 52

* Bold indicates that, in the default configuration, the build isolated each test by executing it in its own process and ran all the test processes sequentially in the same OS on the same machine (no virtual machines).
Otherwise, the default configuration didn’t isolate tests but ran them all in the same process.

† Virtual Machine in the Virtual Machine

‡ Virtual Machine in a Virtual Machine on a Virtual Machine

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

happened to be earlier in the test
suite and didn’t restore the static field
when finishing. So, the later tests in
the test suite that should have caught
the defect passed (because the de-
fect occurred in only the default

configuration), and the defect went
undetected.

In Sai Zhang and his colleagues’
sample of popular open-source Java
software, 96 tests displayed similar
dependencies.5 Of those dependen-
cies, 61 percent arose from side ef-
fects from accesses to static fields.

Isolation and Parallelism
Our final motivating study ad-
dressed the need to enforce further
isolation than process separation
provides, when tests run in parallel.
Although executing each test in its
own process eliminates in-memory
dependencies between test cases,
other persistent state could cause
dependencies among tests. For ex-
ample, when multiple tests read and
write from the same file on disk, the
test run’s results might depend on
their execution order. Even if each
test properly cleans up after itself
(for example, deleting the file), these
tests still can’t execute concurrently
on the same machine because they
would compete for simultaneous ac-
cess to the same file.

We executed the test suites for
each of the 20 Java projects several
more times. We isolated each test
case in a separate process but ran
up to eight tests from each test suite

concurrently on the same machine
(using the parallelization option
available in the most recent versions
of Ant and Maven). As we men-
tioned before, five projects (Apache
Ivy, Apache Nutch, Apache Tomcat,

mkgmap, and Jetty) had tests fail
erroneously when executed concur-
rently. Moreover, even more failures
might have occurred; we didn’t ex-
plore all possible scheduling combi-
nations in which tests might execute
concurrently.

Examining these five projects’
source code, we found two sources
of dependencies: files and network
ports. For example, some tests cre-
ated temporary directories, wrote
files to them, and deleted the di-
rectories when the test ended. This
caused conflicts when two test cases
executed simultaneously. Both tests
used the same temporary directory;
the test that finished first deleted the
directory, causing the second test to
unexpectedly fail.

We also saw several cases of con-
flicting bindings to network ports.
In these cases, part of the test setup
started a mock server listening to
some predefined port and then con-
nected the code under test to that
port. The first test to bind to the
port succeeded; subsequent tests
that executed while that first test
was running unexpectedly failed,
unable to bind to the port. None of
the observed dependencies occurred
when the test suites executed seri-
ally; all the tests correctly cleaned

up the environment state at their
conclusion. None of these projects
had conflicts on resources external
to the machine (for example, remote
servers).

Reducing Testing Time
Our key insight is that we can pro-
vide the same level of test case iso-
lation as process separation without
paying the high overhead cost of re-
starting the JVM for each test case.
The typical reason engineers ask the
build process to restart the JVM be-
fore every test case is to eliminate
in-memory dependencies between
test cases. Our insight relies on the
observation that these dependencies
are easy to track and manage within
a single JVM (without restarting)
with much lower overhead and thus
shorter testing time. Then, we found
that we can speed up testing further
by parallelizing—running multiple
tests simultaneously—if we can also
remove system-level dependencies.

Isolating Object Graphs
The JVM provides a managed mem-
ory environment in which code can’t
construct pointers to arbitrary mem-
ory locations. Instead, the memory
M accessible to some executing func-
tion F is constrained to only that
memory reachable from F’s object
graph, plus any static fields. The ob-
ject graph encompasses the tradi-
tional object-oriented view of mem-
ory: F can receive several pointers to
objects as parameters, those objects
can in turn have pointers to other
objects, and so on.

It’s easy to imagine how to isolate
this object graph between test ex-
ecutions. Assume that the test run-
ner (which is instantiating each test)
constructs new arguments to pass
to each test case and doesn’t pass a
reference to any of the same objects

Pull Quote

 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 7

to multiple tests, as would normally
be the case. Then (at their creation)
no two tests’ object graphs will have
overlapping nodes. Because the test
runner is standardized to the test-
ing framework, ensuring that tests at
this level are isolated is easy.

Isolating static Fields
In contrast, Java static fields are like
global variables: they’re directly
referenced by their field name and
class name (no additional pointers
needed). So, we must isolate them.

Our approach to isolating static
fields is simple and emulates ex-
actly what happens when the JVM
restarts. Between each pair of test
cases, we reexecute the initializer for
every static field, effectively eliminating
static fields as a source of dependen-
cies between tests. VMVM optimizes
this basic approach to further reduce
the overhead of isolating test cases.
It reinitializes only the mutable static
fields of classes used during prior test
executions when they’re needed and
always ignores fields that are immu-
table (guaranteed to be unchanged).

VMVM performs offline static
analysis and bytecode instrumenta-
tion before test execution. This anal-
ysis and instrumentation occurs each
time the application code or tests
change. In this phase, VMVM deter-
mines which classes contain no mu-
table static fields and thus won’t ever
need reinitialization.

VMVM then emulates exactly
the process JVM uses internally for
initializing a class. It inserts guards
(in the bytecode) around every ac-
cess to the class to check whether
the class must be reinitialized and, if
so, to reinitialize it. It inserts these
guards before every instruction that
might create a new instance of a
class (the new bytecode instruction),
access a class’s static method (the

 INVOKESTATIC bytecode instruction), or
access a class’s static field (the GETSTATIC
and PUTSTATIC instructions). VMVM
also intercepts calls to Java’s reflec-
tion library that would dynamically
perform the same operations, add-
ing guards on the fly. In addition,
it modifies each class initializer to
insert instructions to log its execu-
tion. This lets VMVM efficiently de-
termine exactly which classes were
used by previous test cases and thus
will need to be reinitialized in the
next test case that references them.

VMVM performs all these instru-
mentations on only the application
bytecode (not code in the Java core
library set). To reinitialize static fields
belonging to classes in the Java core
libraries, we wrote a tool that scans
the Java API to identify public-facing
methods that set static fields. We then
verified each result by hand (this
process would have to be repeated
only for new versions of Java). We
found 48 classes with methods that
set the value of some static field in the
Java API. For each of these meth-
ods, VMVM provides copy-on-write
functionality, logging each internal

field’s value before changing it and
then restoring that value when re-
initializing. To provide this support,
VMVM prefaces each such method
call with a wrapper to record the
value in a log and then scans the log
at reinitialization (between each pair
of test cases) to restore the value.

Running Tests in Parallel
As we mentioned before, our VM-
VMVM prototype lets us execute
test cases in parallel without inter-
ference by employing a conventional
VM to ensure that each simultane-
ously executing test has its own file
system and virtual network interface
(see Figure 2). VMVMVM still re-
lies on a test’s manually written pre-
test and post-test methods to clean
up system resources between test
classes, so that no two tests are de-
pendent as a result of some shared
file. In our study of the 20 projects,
we found no test classes that were
dependent (when executed sequen-
tially) because of shared system re-
sources. Other researchers have con-
firmed that such dependencies are
uncommon.5

Virtual machine

Virtual machine

Single JVM with VMVM

JUnit job
worker

JUnit job
worker

Single JVM with VMVM

Test
class

Batch
of

tests

Batch
of

tests

Batch
of

tests

Test
class

Test
class

Test
class

Test
class

Test
class

Test
class

Test
class

Host running the build

Master controller

Ant or
Maven test

runner

JUnit
job

distributor

FIGURE 2. The high-level architecture of VMVMVM (Virtual Machine in a Virtual

Machine on a Virtual Machine). Our system integrates directly with test execution

initiated by Ant or Maven, or via JUnit directly. Each test class execution is intercepted

and sent to a master controller that delegates test cases to workers.

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

To run N tests in parallel, we cre-
ate N VMs, with a single daemon
running in each one. Each daemon
listens for requests from our master
controller process, executes the tests
submitted by the controller, and re-
turns the results. The controller col-
lects the results, reorders them to

appear as if they executed serially,
and returns them to the original in-
voker of the test suite as if they had
executed sequentially on the same
machine. The daemons use VMVM
to provide in-memory isolation be-
tween test cases, so they don’t start a
new JVM for each test case.

For easy integration, we provide
a drop-in replacement for the Ant
JUnit task, the Maven JUnit target,
and a custom JUnit runner. Engi-
neers need only change their build
configuration to use our JUnit target
(which accepts the exact same ar-
guments as the normal target); test
cases are automatically parallelized.

For instance, when using our Ant
task, VMVMVM will automatically
start a local socket server, spin up
worker processes, distribute the test
requests, and return the results (in
serial order) to the Ant task. Existing
test listeners and custom test runners
continue to work normally.

Evaluation
We evaluated how our approaches
reduced the 20 projects’ build time.
For each application, we first ran
the entire test suite with each test
case isolated in its own process (the

baseline configuration). Then, we
ran the suite with all tests execut-
ing in the same process, but using
VMVM to provide isolation. Finally,
we ran the suite distributed across
three workers, each one running all
its tests in the same process, again
with VMVM providing the isola-

tion. We performed this entire pro-
cess 10 times, averaging the results.

We performed this study on our
commodity server running Ubuntu
12.04.1 LTS (Long Term Support)
and Java 1.7.025 with a four-core
2.66-GHz Xeon processor and 32
Gbytes of RAM. Each worker ran
in its own VMWare Workstation 10
VM, running Ubuntu 12.04.1 LTS
and allocated 2 Gbytes of RAM and
two cores.

Table 1 shows the results. All
speedups are relative to the length of
a build that isolated each test by exe-
cuting it in its own process and then
ran all the test processes sequentially
in the same OS on the same machine
(no VMs). If this was a project’s de-
fault configuration, the table shows
it in bold; otherwise, the default con-
figuration didn’t isolate tests but ran
them all in the same process.

The average speedups provided
by both solutions (VMVM alone
and VMVMVM parallelized in mul-
tiple VMs) were comparable. Build
time decreased by 47 percent when
we used VMVM to isolate test cases
and by 52 percent when we added
VMVMVM.

We were interested most in the

cases in which one approach sig-
nificantly eclipsed the other. For ex-
ample, for Apache Tomcat, VMVM
sped up the overall build by only
28 percent, whereas VMVMVM
sped it up by 68 percent. For btrace,
VMVM sped up the overall build by
23 percent, whereas VMVMVM—
with VMVM included—slowed it
down by 20 percent. Tomcat had al-
most 300 test classes, with a fairly
even distribution of test lengths, so
parallelization was quite effective.
On the other hand, btrace had only
three test classes, taking 1,410 ms,
36 ms, and 23 ms, respectively.

For btrace, parallelization pro-
vided no significant benefit because
a single test class dominated the
testing time. The communication
overhead of distributing the tests to
the workers showed through, caus-
ing VMVMVM to provide a slow-
down compared to VMVM alone.
In the other applications in which
VMVMVM didn’t perform as well
as VMVM, the overall number of
test classes was nearly the same as
the number of workers (three), and
one or two of the tests dominated
the others in execution time. In
such cases, parallelizing test classes
wasn’t effective; using only VMVM
increased speedup.

O ur study shows that in
projects with a diverse
range of test classes, VM-

VMVM greatly reduced the time
to run a complete build. On popu-
lar open source software, such as
Apache Tomcat, this reduction was
huge. We’ve released a stand-alone
version of VMVM under an MIT
license via GitHub (https://github
.com/Programming-Systems-Lab
/vmvm). We’re working with our
industrial partners to release a full

Pull Quote

 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 9

version of VMVMVM. We hope our
efforts to reduce Java build times
can help relieve release engineers
from long-running builds.

Acknowledgments
Jonathan Bell and Gail Kaiser are mem-
bers of Columbia University’s Program-
ming Systems Laboratory, which is funded
partly by US National Science Foundation
awards CCF-1302269, CCF-1161079, and
CNS-0905246 and US National Institutes
of Health grant U54 CA121852.

References
 1. S. Yoo and M. Harman, “Regression

Testing Minimization, Selection and Pri-
oritization: A Survey,” Software Testing,
Verification and Reliability, vol. 22, no. 2,
2012, pp. 67–120.

 2. G. Rothermel and M.J. Harrold, “Analyz-
ing Regression Test Selection Techniques,”
IEEE Trans. Software Eng., vol. 22, no. 8,
1996, pp. 529–441.

 3. J. Bell and G. Kaiser, “Unit Test Virtu-
alization with VMVM,” Proc. 36th Int’l
Conf. Software Eng. (ICSE 14), 2014, pp.
550–561.

 4. K. Muşlu, B. Soran, and J. Wuttke, “Find-
ing Bugs by Isolating Unit Tests,” Proc.
19th ACM SIGSOFT Symp. and 13th
European Conf. Foundations of Software
Eng. (ESEC/FSE 11), 2011, pp. 496–499.

 5. S. Zhang et al., “Empirically Revisiting
the Test Independence Assumption,” Proc.
2014 Int’l Symp. Software Testing and
Analysis (ISSTA 14), 2014, pp. 384–396.

JONATHAN BELL is a PhD student in software engineering
at Columbia University. His research interests include software
testing, program analysis, and fault reproduction. Bell received
an M Phil in computer science from Columbia University. He’s
member of the IEEE Computer Society. Contact him at jbell@
cs.columbia.edu.

ERIC MELSKI is the chief architect at ElectricCloud and has
been developing build optimization software there for more than
12 years. His research interests include distributed systems,
high-performance computing, parallel programming, and kernel
development. Melski received a BS in computer science from
the University of Wisconsin. Contact him at eric@electric-cloud.
com.

MOHAN DATTATREYA is the senior director of engineering at
ElectricCloud. His research interests include software-defined
networks, application acceleration, and distributed systems per-
formance engineering. Dattatreya received an MS in computer
science from Stanford University. Contact him at mohan@
electric-cloud.com.

GAIL E. KAISER is a professor of computer science at Colum-
bia University. Her research interests include software reliability
and robustness, information management, social software
engineering, and software development environments and
tools. Kaiser received a PhD in computer science from Carnegie
Mellon University. She was a founding associate editor of ACM
Transactions on Software Engineering and Methodology and
has been an editorial board member of IEEE Internet Comput-
ing. She’s a senior member of IEEE. Contact her at kaiser@
cs.columbia.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

FILL

