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// To speed up testing, researchers combined two 

complementary approaches. Unit test virtualization 

isolates in-memory dependencies among test cases. 

Virtualized unit test virtualization isolates external 

dependencies such as files and network ports 

while long-running tests execute in parallel. //

SLOW SOFTWARE BUILD cycles 
substantially hinder continuous in-
tegration during development. They 
can be an even more significant nui-
sance for continuous delivery and 
other release processes. As a com-
plex software system evolves and its 
compilation and packaging process 
becomes more complicated, building 
changes from a process that develop-
ers perform frequently on their desk-
top machines after every small code 
edit, to one performed nightly on a 

dedicated build machine, to one that 
can’t even be performed in its entirety 
overnight. We aim to significantly re-
duce build time, with a sufficiently 
general solution applicable to both 
full (“clean”) and incremental builds.

We decided to reduce building 
time by reducing testing time. To 
do this, we developed a system that 
combines two approaches. The first 
approach, unit test virtualization, 
isolates in-memory dependencies 
among test cases, which otherwise 

are isolated inefficiently by restart-
ing the Java Virtual Machine (JVM) 
before every test. We call our imple-
mentation of this approach VMVM 
(Virtual Machine in the Virtual Ma-
chine, pronounced “vroom vroom”). 
The second approach, virtualized 
unit test virtualization, isolates ex-
ternal dependencies such as files and 
network ports while long-running 
tests execute in parallel. We call our 
implementation of this approach 
VMVMVM (Virtual Machine in 
a Virtual Machine on a Virtual 
 Machine—“vroom vroom vroom”).

The Dominance of 
Testing Time
We’ve found that the testing phase 
for real-world Java-based build pro-
cesses often dominates compilation, 
packaging, and other traditional 
contributors to the build time. So, 
we focus on reducing the clock time 
needed to run test suites. Some of 
our industry partners report that 
they’ve been forced to remove test-
ing from their regular build process 
as a stopgap solution. For instance, 
one partner reported that its Java-
based build process took about eight 
hours—long enough to be problem-
atic even for nightly build cycles.

To obtain concrete data on this 
problem, we measured the compila-
tion, test, and other build phases for 
20 popular open-source Java proj-
ects. We found the situation could be 
even worse than in our partner’s an-
ecdote: the testing phase took more 
than four times as long, on average, 
as the rest of the build (see Figure 1).

Unacceptably long test cycles 
aren’t new. Previous research tried to 
reduce the time to run test suites.1 It 
focused on

• selecting the smallest subset of 
relevant tests deemed most likely 
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to find the faults for a given 
change set or

• reordering tests to execute those 
more likely to fail sooner.

The former approach can find only 
the defects affected by that change 
set. The latter approach might find 
defects sooner but only reduces the 
total time needed if testing halts af-
ter a time-out.

Furthermore, the approach that 
reduces the number of tests in a suite 
isn’t sound—there’s always a risk 
that some tests are deemed irrelevant 
when they aren’t. (In the general case, 
it’s undecidable whether one test 
suite is equivalent to another.) So, we 
seek to reduce testing time while still 
executing the entire test suite, with 
no loss of fault-finding ability.

Isolation Inefficiency
We studied the testing process that 
many Java projects employ, using the 
popular JUnit framework. JUnit can 
be used for integration and full sys-
tem end-to-end tests as well as unit 
testing. We observed a common yet 
inefficient practice: each test exe-
cuted in a fresh process—that is, in 
its own Java Virtual Machine (JVM).

An important implicit assump-
tion in testing is that the result of 
test T shouldn’t depend on the ex-
ecution of some previous test Tp. 
This assumption of independent test 
cases, a part of the controlled regres-
sion testing assumption (applicable 
to other kinds of testing besides re-
gression), is difficult to achieve ef-
ficiently.2 Ideally, it’s enforced with 
pretest setup methods and post-test 
tear-down methods.

However, for complex software 
(for example, software that uses 
black-box third-party APIs), ensur-
ing these methods’ correctness can 
be particularly difficult. The testing 

code might be buggy or incomplete, 
just like the application code being 
tested. Moreover, testers might miss 
resetting the state of some part of the 
system under test (and hence cause 
an unexpected dependency between 
one test and another). In this case, 
the results can range from false posi-
tives (where tests incorrectly raise an 
alarm when the code is correct) to, 
what’s worse, false negatives (where 
tests fail to raise an alarm despite er-
rors in the code).

So in practice, each test often ex-
ecutes in a separate process, which 
ensures that the tests are isolated 
(and don’t have hidden dependen-
cies), greatly simplifying writing the 
pretest and post-test methods. This 
isolation comes at a significant cost. 
We studied the overhead of executing 
each test in its own process, relative 
to the time needed to simply execute 
each test in the same process, for the 
20 Java projects we mentioned ear-
lier. We found it to be astonishingly 
high: on average, 618 percent (and 
up to 4,153 percent!).

Completely removing this iso-
lation from the testing process in 
these applications would reduce ap-
plication build time a net 56 percent. 
However, removing test isolation 
can have disastrous consequences on 
test suite correctness. In our study, 
we found 70 test cases that passed 
in isolation yet failed unexpectedly 
without it. Even worse, there are re-
ports of test cases that erroneously 
pass when not isolated (despite a 
defect in the application under test) 
and fail only under isolation.

VMVM and VMVMVM
To combat this overhead while main-
taining test case isolation, we devel-
oped unit test virtualization,3 which 
automatically and efficiently iso-
lates the side-effects of unit tests and 

other tests. The system reinitializes 
only that part of memory written by 
some previous test that could be read 
by the next test (determined by static 
and dynamic analysis), rather than 
restarting the entire process to re-
initialize the entire in-memory state. 
This provides the same level of isola-
tion that running each test class in its 
own JVM would provide. (Multiple 
test methods in the same test class 
still can have dependencies, which 
current versions of JUnit allow.)

We implemented our approach for 
Java in VMVM. As we show later, 
when we applied VMVM to the test 
suites of the 20 projects, it achieved 
an impressive average net speedup of 
the entire build time (compared to 
running each in a separate process). 
Because all tests executed, no loss of 
fault-finding ability occurred.

VMVM works well for speeding 
up test suites when the overhead of 
restarting the JVM between tests 
(usually a constant 1 to 2 seconds) 
constitutes a significant portion of 
the testing time. However, in cases 
with only a few test classes that are 
very long (for example, 10 seconds 

Testing 
78% 

Compiling 
17% 

Other 5% 

FIGURE 1. How build time is spent. 

By reducing testing time, we aim to 

significantly reduce build time, with a 

sufficiently general solution applicable to 

both full and incremental builds.
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each), removing the overhead of re-
starting the JVM and adding the 
overhead of our dynamic analysis 
can slow down testing.

In those latter cases, we take a 
complementary approach to reducing 
clock time: we leverage modern multi-
core hardware to execute multiple test 
cases in parallel. A simple approach 
to parallelizing test cases (offered by 

the most recent versions of Ant and 
Maven) uses a controller thread to 
distribute test cases in round-robin 
manner to several workers execut-
ing in parallel on the same machine. 
(This simply spawns extra processes 
running in the same directory.) How-
ever, of our 20 projects, five had tests 
fail erroneously with this paralleliza-
tion, with test cases racing for access 
to shared resources (for example, files 
or sockets). To safely execute multiple 
tests simultaneously, each must have 
its own virtual file system and net-
work interface.

So, we developed virtualized 
unit test virtualization, which lever-
ages a distributed architecture. Each 
worker process executes in a distinct 
conventional VM (as in VMware 
or VirtualBox), with its own vir-
tual file system and other system re-
sources. This architecture is effective 
at simultaneously executing multi-
ple tests that use local files and net-
work resources (for example, bind-
ing to a socket and connecting back 
to that socket). However, it doesn’t 
address test cases that interact with 
remote servers and databases; such 

interactions are usually avoided dur-
ing testing and didn’t occur in the 
test suites we examined. As we men-
tioned before, we call our implemen-
tation for Java VMVMVM.

The result is an integrated two-
tier system that reduces the build 
time for Java projects by reduc-
ing testing time in two ways. First, 
VMVM reduces the time between 

short test cases that’s taken to isolate 
the test cases. Second, VMVMVM 
reduces the total time for long test 
cases by letting them run in parallel 
(and using VMVM internally so that 
the same JVM can be used for the 
sequence of test jobs run in the same 
worker VM).

The Problem Scope
To empirically ground our efforts 
to reduce build time, we asked three 
main questions:

• Does testing take a significant 
portion of build time?

• Do developers isolate their test 
cases?

• If they do, is this isolation suffi-
cient to let tests run in parallel?

To answer these questions, we 
downloaded the 1,200 largest free 
and open-source Java projects from 
the indexing website Ohloh (now 
Open Hub; www.openhub.net). 
From those, we selected the proj-
ects that executed JUnit tests dur-
ing their Ant- or Maven-based 
builds. We tried to build all the 591 

projects that use JUnit but found 
that only about 50 worked out of 
the box without significant configu-
ration (for example, worked by run-
ning a single command such as ant test 
or mvn test). From those, we selected 
the 20 projects we’ve been talking 
about. This was a manageable set 
of projects that ensured a diversity 
of widely used, recognizable proj-
ects (for example, the Apache Tom-
cat JavaServer Pages server) and 
smaller projects (for example, JTor, 
an alpha-quality Tor implementation 
with a very small contributor base).

Measuring Testing Time
To answer the first question, we ex-
ecuted the entire build process for 
each application (using its Ant or 
Maven build script), recorded the 
time each build step took, and ag-
gregated the time for all the testing 
(junit) steps and all the compilation 
(javac) steps. We executed this pro-
cess 10 times, averaging the results.

Table 1 shows the results, which 
roughly matched our expectations 
based on our anecdotal industry 
evidence. For this study, we ensured 
that all tests were isolated in their 
own process; those projects that al-
ready performed this isolation are 
bold in Table 1. Testing took on av-
erage 78 percent of the build time.

Isolating Test Cases
To answer the second question, we 
statically analyzed the test scripts 
for the 591 projects to determine 
the percentage of them that executed 
each test case (“test class” in JUnit 
terminology) in its own process. Of 
those projects with the most test 
cases (over 1,000 test cases; 47 to-
tal), 81 percent executed each test in 
its own process. Overall, 41 percent 
of all the projects executed each test 
in its own process.
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Test isolation is necessary for 
many complex software systems. 
Otherwise, the testers would need 
to write additional test cases for the 
pretest setup and post-test tear-down 
methods, to test the tests. Kıvanç 
Muşlu and his colleagues pointed 
out a perfect example of what can 

happen when tests aren’t isolated.4 
They found that a fault that took 
four years to resolve (Apache Com-
mons CLI-26, 186 and 187) could 
have been detected immediately 
(even before users reported it) if the 
project’s test cases had been isolated.

The problem was that several test 

cases checked the Apache library’s 
behavior under varying configura-
tions, and their setup stored these 
configurations in a static field. How-
ever, other tests assumed that the 
system under test would be clean, 
in a default configuration. But some 
of the configuration-modifying tests 

TA
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 1 The build speedup for 20 popular open source Java projects.*

Project
No. of 

classes
Test LOC × 

1,000
Build time spent 

testing (%)

Build speedup (%)

VMVM† VMVMVM‡

Apache Commons Codec 46 17.99 91 83 85

Apache Commons Validator 21 17.46 93 31 34

Apache Ivy 119 305.99 95 70 86

Apache Nutch 27 100.91 92 13 16

Apache River 22 365.72 74 41 43

Apache Tomcat 292 5,692.45 99 28 68

betterFORM 127 1,114.14 98 73 90

Bristlecone Performance Test Tools 4 16.52 94 –2 12

btrace 3 14.15 49 23 –20

Closure Compiler 223 467.57 93 63 75

Commons IO 84 29.16 96 52 85

FreeRapid Downloader 7 257.70 43 43 41

gedcom4j 57 18.22 98 57 75

JAXX 6 91.13 48 45 34

Jetty—Java HTTP Servlet Server 6 621.53 64 18 16

JTor 7 15.07 61 64 63

mkgmap 43 58.54 88 59 68

Openfire 12 250.79 32 32 31

Trove for Java 12 45.31 56 60 59

Universal Password Manager 10 5.62 97 95 70

Average 56 475.30 78 47 52

* Bold indicates that, in the default configuration, the build isolated each test by executing it in its own process and ran all the test processes sequentially in the same OS on the same machine (no virtual machines). 
Otherwise, the default configuration didn’t isolate tests but ran them all in the same process.

† Virtual Machine in the Virtual Machine

‡ Virtual Machine in a Virtual Machine on a Virtual Machine
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happened to be earlier in the test 
suite and didn’t restore the static field 
when finishing. So, the later tests in 
the test suite that should have caught 
the defect passed (because the de-
fect occurred in only the default 

configuration), and the defect went 
undetected.

In Sai Zhang and his colleagues’ 
sample of popular open-source Java 
software, 96 tests displayed similar 
dependencies.5 Of those dependen-
cies, 61 percent arose from side ef-
fects from accesses to static fields.

Isolation and Parallelism
Our final motivating study ad-
dressed the need to enforce further 
isolation than process separation 
provides, when tests run in parallel. 
Although executing each test in its 
own process eliminates in-memory 
dependencies between test cases, 
other persistent state could cause 
dependencies among tests. For ex-
ample, when multiple tests read and 
write from the same file on disk, the 
test run’s results might depend on 
their execution order. Even if each 
test properly cleans up after itself 
(for example, deleting the file), these 
tests still can’t execute concurrently 
on the same machine because they 
would compete for simultaneous ac-
cess to the same file.

We executed the test suites for 
each of the 20 Java projects several 
more times. We isolated each test 
case in a separate process but ran 
up to eight tests from each test suite 

concurrently on the same machine 
(using the parallelization option 
available in the most recent versions 
of Ant and Maven). As we men-
tioned before, five projects (Apache 
Ivy, Apache Nutch, Apache Tomcat, 

mkgmap, and Jetty) had tests fail 
erroneously when executed concur-
rently. Moreover, even more failures 
might have occurred; we didn’t ex-
plore all possible scheduling combi-
nations in which tests might execute 
concurrently.

Examining these five projects’ 
source code, we found two sources 
of dependencies: files and network 
ports. For example, some tests cre-
ated temporary directories, wrote 
files to them, and deleted the di-
rectories when the test ended. This 
caused conflicts when two test cases 
executed simultaneously. Both tests 
used the same temporary directory; 
the test that finished first deleted the 
directory, causing the second test to 
unexpectedly fail.

We also saw several cases of con-
flicting bindings to network ports. 
In these cases, part of the test setup 
started a mock server listening to 
some predefined port and then con-
nected the code under test to that 
port. The first test to bind to the 
port succeeded; subsequent tests 
that executed while that first test 
was running unexpectedly failed, 
unable to bind to the port. None of 
the observed dependencies occurred 
when the test suites executed seri-
ally; all the tests correctly cleaned 

up the environment state at their 
conclusion. None of these projects 
had conflicts on resources external 
to the machine (for example, remote 
servers).

Reducing Testing Time
Our key insight is that we can pro-
vide the same level of test case iso-
lation as process separation without 
paying the high overhead cost of re-
starting the JVM for each test case. 
The typical reason engineers ask the 
build process to restart the JVM be-
fore every test case is to eliminate 
in-memory dependencies between 
test cases. Our insight relies on the 
observation that these dependencies 
are easy to track and manage within 
a single JVM (without restarting) 
with much lower overhead and thus 
shorter testing time. Then, we found 
that we can speed up testing further 
by parallelizing—running multiple 
tests simultaneously—if we can also 
remove system-level dependencies.

Isolating Object Graphs
The JVM provides a managed mem-
ory environment in which code can’t 
construct pointers to arbitrary mem-
ory locations. Instead, the memory 
M accessible to some executing func-
tion F is constrained to only that 
memory reachable from F’s object 
graph, plus any static fields. The ob-
ject graph encompasses the tradi-
tional object-oriented view of mem-
ory: F can receive several pointers to 
objects as parameters, those objects 
can in turn have pointers to other 
objects, and so on.

It’s easy to imagine how to isolate 
this object graph between test ex-
ecutions. Assume that the test run-
ner (which is instantiating each test) 
constructs new arguments to pass 
to each test case and doesn’t pass a 
reference to any of the same objects 
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to multiple tests, as would normally 
be the case. Then (at their creation) 
no two tests’ object graphs will have 
overlapping nodes. Because the test 
runner is standardized to the test-
ing framework, ensuring that tests at 
this level are isolated is easy.

Isolating static Fields
In contrast, Java static fields are like 
global variables: they’re directly 
referenced by their field name and 
class name (no additional pointers 
needed). So, we must isolate them.

Our approach to isolating static 
fields is simple and emulates ex-
actly what happens when the JVM 
restarts. Between each pair of test 
cases, we reexecute the initializer for 
every static field, effectively eliminating 
static fields as a source of dependen-
cies between tests. VMVM optimizes 
this basic approach to further reduce 
the overhead of isolating test cases. 
It reinitializes only the mutable static 
fields of classes used during prior test 
executions when they’re needed and 
always ignores fields that are immu-
table (guaranteed to be unchanged).

VMVM performs offline static 
analysis and bytecode instrumenta-
tion before test execution. This anal-
ysis and instrumentation occurs each 
time the application code or tests 
change. In this phase, VMVM deter-
mines which classes contain no mu-
table static fields and thus won’t ever 
need reinitialization.

VMVM then emulates exactly 
the process JVM uses internally for 
initializing a class. It inserts guards 
(in the bytecode) around every ac-
cess to the class to check whether 
the class must be reinitialized and, if 
so, to reinitialize it. It inserts these 
guards before every instruction that 
might create a new instance of a 
class (the new bytecode instruction), 
access a class’s static method (the 

 INVOKESTATIC bytecode instruction), or 
access a class’s static field (the GETSTATIC 
and PUTSTATIC instructions). VMVM 
also intercepts calls to Java’s reflec-
tion library that would dynamically 
perform the same operations, add-
ing guards on the fly. In addition, 
it modifies each class initializer to 
insert instructions to log its execu-
tion. This lets VMVM efficiently de-
termine exactly which classes were 
used by previous test cases and thus 
will need to be reinitialized in the 
next test case that references them.

VMVM performs all these instru-
mentations on only the application 
bytecode (not code in the Java core 
library set). To reinitialize static fields 
belonging to classes in the Java core 
libraries, we wrote a tool that scans 
the Java API to identify public-facing 
methods that set static fields. We then 
verified each result by hand (this 
process would have to be repeated 
only for new versions of Java). We 
found 48 classes with methods that 
set the value of some static field in the 
Java API. For each of these meth-
ods, VMVM provides copy-on-write 
functionality, logging each internal 

field’s value before changing it and 
then restoring that value when re-
initializing. To provide this support, 
VMVM prefaces each such method 
call with a wrapper to record the 
value in a log and then scans the log 
at reinitialization (between each pair 
of test cases) to restore the value.

Running Tests in Parallel
As we mentioned before, our VM-
VMVM prototype lets us execute 
test cases in parallel without inter-
ference by employing a conventional 
VM to ensure that each simultane-
ously executing test has its own file 
system and virtual network interface 
(see Figure 2). VMVMVM still re-
lies on a test’s manually written pre-
test and post-test methods to clean 
up system resources between test 
classes, so that no two tests are de-
pendent as a result of some shared 
file. In our study of the 20 projects, 
we found no test classes that were 
dependent (when executed sequen-
tially) because of shared system re-
sources. Other researchers have con-
firmed that such dependencies are 
uncommon.5

Virtual machine

Virtual machine

Single JVM with VMVM

JUnit job
worker

JUnit job
worker

Single JVM with VMVM

Test
class

Batch
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tests

Batch
of

tests

Batch
of
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Test
class

Test
class

Test
class

Test
class

Test
class

Test
class

Test
class

Host running the build

Master controller
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runner

JUnit
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FIGURE 2. The high-level architecture of VMVMVM (Virtual Machine in a Virtual 

Machine on a Virtual Machine). Our system integrates directly with test execution 

initiated by Ant or Maven, or via JUnit directly. Each test class execution is intercepted 

and sent to a master controller that delegates test cases to workers.
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To run N tests in parallel, we cre-
ate N VMs, with a single daemon 
running in each one. Each daemon 
listens for requests from our master 
controller process, executes the tests 
submitted by the controller, and re-
turns the results. The controller col-
lects the results, reorders them to 

appear as if they executed serially, 
and returns them to the original in-
voker of the test suite as if they had 
executed sequentially on the same 
machine. The daemons use VMVM 
to provide in-memory isolation be-
tween test cases, so they don’t start a 
new JVM for each test case.

For easy integration, we provide 
a drop-in replacement for the Ant 
JUnit task, the Maven JUnit target, 
and a custom JUnit runner. Engi-
neers need only change their build 
configuration to use our JUnit target 
(which accepts the exact same ar-
guments as the normal target); test 
cases are automatically parallelized.

For instance, when using our Ant 
task, VMVMVM will automatically 
start a local socket server, spin up 
worker processes, distribute the test 
requests, and return the results (in 
serial order) to the Ant task. Existing 
test listeners and custom test runners 
continue to work normally.

Evaluation
We evaluated how our approaches 
reduced the 20 projects’ build time. 
For each application, we first ran 
the entire test suite with each test 
case isolated in its own process (the 

baseline configuration). Then, we 
ran the suite with all tests execut-
ing in the same process, but using 
VMVM to provide isolation. Finally, 
we ran the suite distributed across 
three workers, each one running all 
its tests in the same process, again 
with VMVM providing the isola-

tion. We performed this entire pro-
cess 10 times, averaging the results.

We performed this study on our 
commodity server running Ubuntu 
12.04.1 LTS (Long Term Support) 
and Java 1.7.025 with a four-core 
2.66-GHz Xeon processor and 32 
Gbytes of RAM. Each worker ran 
in its own VMWare Workstation 10 
VM, running Ubuntu 12.04.1 LTS 
and allocated 2 Gbytes of RAM and 
two cores.

Table 1 shows the results. All 
speedups are relative to the length of 
a build that isolated each test by exe-
cuting it in its own process and then 
ran all the test processes sequentially 
in the same OS on the same machine 
(no VMs). If this was a project’s de-
fault configuration, the table shows 
it in bold; otherwise, the default con-
figuration didn’t isolate tests but ran 
them all in the same process.

The average speedups provided 
by both solutions (VMVM alone 
and VMVMVM parallelized in mul-
tiple VMs) were comparable. Build 
time decreased by 47 percent when 
we used VMVM to isolate test cases 
and by 52 percent when we added 
VMVMVM.

We were interested most in the 

cases in which one approach sig-
nificantly eclipsed the other. For ex-
ample, for Apache Tomcat, VMVM 
sped up the overall build by only 
28 percent, whereas VMVMVM 
sped it up by 68 percent. For btrace, 
VMVM sped up the overall build by 
23 percent, whereas VMVMVM—
with VMVM included—slowed it 
down by 20 percent. Tomcat had al-
most 300 test classes, with a fairly 
even distribution of test lengths, so 
parallelization was quite effective. 
On the other hand, btrace had only 
three test classes, taking 1,410 ms, 
36 ms, and 23 ms, respectively.

For btrace, parallelization pro-
vided no significant benefit because 
a single test class dominated the 
testing time. The communication 
overhead of distributing the tests to 
the workers showed through, caus-
ing VMVMVM to provide a slow-
down compared to VMVM alone. 
In the other applications in which 
VMVMVM didn’t perform as well 
as VMVM, the overall number of 
test classes was nearly the same as 
the number of workers (three), and 
one or two of the tests dominated 
the others in execution time. In 
such cases, parallelizing test classes 
wasn’t effective; using only VMVM 
increased speedup.

O ur study shows that in 
projects with a diverse 
range of test classes, VM-

VMVM greatly reduced the time 
to run a complete build. On popu-
lar open source software, such as 
Apache Tomcat, this reduction was 
huge. We’ve released a stand-alone 
version of VMVM under an MIT 
license via GitHub (https://github 
.com/Programming-Systems-Lab 
/vmvm). We’re working with our 
industrial partners to release a full 
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version of VMVMVM. We hope our 
efforts to reduce Java build times 
can help relieve release engineers 
from long-running builds.
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