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The Effects of Computational Resources on Flaky
Tests

Denini Silva, Martin Gruber, Satyajit Gokhale, Ellen Arteca, Alexi Turcotte, Marcelo d’Amorim, Wing Lam,
Stefan Winter, and Jonathan Bell

Abstract—Flaky tests are tests that non-deterministically pass
and fail in unchanged code. These tests can be detrimental to
developers’ productivity. Particularly when tests run in contin-
uous integration environments, the tests may be competing for
access to limited computational resources (CPUs, memory etc.),
and we hypothesize that resource (un)-availability may be a
significant factor in the failure rate of flaky tests. We present
the first assessment of the impact that computational resources
have on flaky tests, including a total of 52 projects written in Java,
JavaScript and Python, and 27 different resource configurations.
Using a rigorous statistical methodology, we determine which
tests are RAFTs (Resource-Affected Flaky Tests). We find that
46.5% of the flaky tests in our dataset are RAFTs, indicating that
a substantial proportion of flaky-test failures happen depending
on the resources available when running tests. We report RAFTs
and configurations to avoid them to developers, and received
interest to either fix the RAFTs or to improve the specifications
of the projects so that tests would be run only in configurations
that are unlikely to encounter RAFT failures. Although most
test suites in our dataset are executed quite quickly (under one
minute) in a baseline configuration, our results highlight the
possibility of using this methodology to detect RAFT to reduce
the cost of cloud infrastructure for reliably running larger test
suites.

I. INTRODUCTION

Flaky tests are tests that can pass and fail in repeated
executions without changes to the test code or the code under
test [1]. Flaky tests are detrimental to developer’s productivity.
In a continuous integration environment where developers
run tests after making code changes, test failures signal to
developers that their changes may have introduced a fault,
which needs to be debugged and repaired so that all tests pass
again. When a flaky test fails, the developers, unaware of the
flakiness at first, may be misled to debug the test failure in
the recent code changes, even though the flaky test failure
is unrelated to the changes and can be due to a myriad of
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reasons, such as dependency on specific thread interleavings,
test execution orders, etc. [1]–[3]. The negative effects of flaky
tests have been reported as a substantial issue in many software
companies, such as Apple [4], Ericsson [5], [6], Facebook [7],
[8], Google [9]–[12], Huawei [13], Microsoft [14]–[18], and
Mozilla [19], [20].

This paper makes the observation that test flakiness can
often be attributed to the (un)-availability of computational
resources, e.g., CPU, memory, etc. We use the term RAFT
(Resource-Affected Flaky Test) to refer to a test that manifests
flakiness under such circumstances. Intuitively, the unavail-
ability of required but unspecified computational resources
can lead to runtime errors that affect test execution. For
instance, if CPU resources are unavailable, either due to test
execution on a weakly equipped machine or CPU contention
in a multi-processing multi-tenant setting, implicit test as-
sumptions on the latency of asynchronous operations may be
violated and lead to test failures [5], [17], [18], [21]. Overall,
the (un)-availability of resources can trigger nondeterministic
behavior associated with different causes of flakiness [22], e.g.,
ASYNC WAIT or CONCURRENCY.

Figure 1: Trade-off be-
tween the likelihood of ob-
serving RAFT failures and
resource availability.

Acquiring unlimited resources
is not a realistic solution to ad-
dress RAFT failures as com-
putational resources are finite,
and cloud computing costs can
quickly add up. Increasing re-
sources incessantly will eventu-
ally result in diminishing returns
in terms of RAFT failure preven-
tion relative to cost. Likewise,
maximizing the savings in com-
puting resources may be disrup-
tive and unproductive due to an
increase in RAFT failures. Fig-
ure 1 illustrates the trade-off be-
tween resource availability and
the likelihood of a RAFT fail-
ure. Conceptually, the “sweet-
spot” region in the figure represents computational resource
configurations that balance cost and failure ratio.

RAFT opens an interesting perspective on the link between
a controlled parameter of the execution environment—the
computing resources—and the detection and prevention of
flaky tests:

1) If resources are constrained, the likelihood for observ-
ing RAFT failures increases. This increase helps RAFT
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detection, which is a prerequisite for localization and
repair, in case the failure probability is very low in normal
operation. A higher failure rate is also beneficial for
debugging a flaky test.

2) If tests are known to be sensitive to resource constraints,
the resource configuration of their runtime environment
can be chosen in a way to reduce failure probability and
thereby prevent RAFT from affecting developers. Future
research might examine specific runtime techniques to
optimize test execution.

To assess the effects of computational resources on flaky
tests, we propose a rigorous statistical methodology to de-
termine which flaky tests are resource-affected. Using this
methodology, we conduct a comprehensive study involving 52
open-source projects written in Java, JavaScript and Python.
We structured the study in three parts:

First, we measure the prevalence of RAFT when running
tests for 300 times on 16 configurations of CPU, memory,
disk, and network. A RAFT is a test whose failure rates differ
with statistical significance under throttling and non-throttling
conditions (§ III-C). We find that nearly half of all tests
found to be flaky are RAFT. These constraints intentionally
impose artificial resource constraints that are unlikely to be
observed in a real environment, but nonetheless can be used
to explore the prevalence of RAFT. In a later step, we examine
the prevalence of RAFT under more realistic configurations.
Determining that a test is RAFT is important because it
can make it easier for developers to avoid flaky failures (by
providing tests with sufficient resources) and for researchers
to detect flaky tests (by providing tests with fewer resources).

Second, we measure which resources have the highest
impact on RAFTs. We find that CPU availability has higher
importance compared to memory and much higher importance
compared to disk and network. This finding is of high practical
relevance for detection and prevention of RAFTs, as it is a
parameter that can be controlled and scaled in real-world cloud
computing configurations. In our dataset of 52 projects, we
show that RAFTs are more likely to occur when the available
CPU is less than 1 core and memory is less than 1GiB. This
finding is relevant for tests that can run on different hardware
configurations or on shared hardware with load that varies
over time, which can both lead to resource contention. It also
has important implications for debugging flaky test failures,
as debugging is commonly conducted on a different machine
(e.g., a developer’s laptop) than the machine on which the test
failed in continuous integration.

Third, we show that scaling resources beyond certain con-
figurations yields no statistically significant improvements for
preventing RAFTs. This finding has practical implications
for reducing operational cost while mitigating RAFT. Fur-
thermore, we find that RAFTs that manifest nondeterministic
behavior in only one of the fifteen configurations we analyzed
are rare, suggesting that a small sample of configurations can
be used to detect RAFT and that increasing the number of
trials should suffice to increase confidence levels that a flaky
test is a RAFT. Finally, we assess the most cost-effective
configurations for preventing and detecting RAFT.

Overall, we present initial, yet strong evidence of the

importance of RAFTs for regression testing. As an initial
study into this phenomenon, our study has limitations: most
of the projects studied do not experience significant resource
contention in CI, and have relatively fast-running test suites
(median=52 seconds) for which acceleration or cost savings
may not be meaningful. Nonetheless, this dataset supports
conclusions regarding the efficacy of our methodology and
the overall presence of RAFT. Our findings have several
implications for developers (§ V) and researchers (§ V-C)
and open an avenue for further research on flaky tests. Our
dataset and scripts are publicly available under the following
repository [23].

II. BACKGROUND AND RELATED WORK

Flaky tests [3] have been the subject of systematic academic
studies for almost a decade with numerous contributions to
their detection, repair, avoidance, and tolerance at run-time.
As the root causes behind the non-determinism of flaky
tests are highly diverse, so are the strategies to effectively
cope with them. Luo et al. [22] identified 10 diverse root
causes for test flakiness across 51 affected projects from
the Apache Software Foundation and derived corresponding
repair strategies from fixing commits. Much of the following
work to combat flaky tests consequently focused on individual
root causes. iDFlakies [24] and iFixFlakies [25], for instance,
have been developed as approaches for detecting and auto-
matically repairing order-dependent flaky tests. In their work,
the authors make a terminological distinction between order-
dependent and non-order-dependent flaky tests, i.e., an explicit
naming of the fraction their approaches aim to address vs.
the totality of flaky tests. While other work is not making
similarly dichotomous distinctions, the addressed root causes
are commonly named explicitly, e.g., Assumed deterministic
implementations of nondeterministic specifications [26] or
infrastructure-dependent flaky tests [27]. A study by Ahmad
et al. [28] describes practitioners’ perceptions of test flakiness
factors; some important factors identified related to our work
include “environment understanding”, “test case robustness”,
and “undermining network infrastructure” which can be argued
to have some resource component. However, the study does
not explicitly mention resource abundance or scarcity as a
factor. Whereas Ahmad et al. survey developers, we expand
the body of knowledge about infrastructure and flakiness
by directly studying the impact of resources on test flaki-
ness. We focus on RAFT, which provides a novel statistical
methodology for examining the impact of infrastructure on test
flakiness.

Besides the extensive study of RAFTs’ prevalence across
a large variety of popular projects along with mitigation
strategies (detection and prevention), the focus on RAFTs
conceptually distinguishes our work from a technically similar
proposal by Terragni et al. [29]. While Terragni at al. also
hypothesize an effect of resource unavailability on flaky test
executions, their stated goal is root-causing in the sense of
deriving a flaky test’s category from a number of different
possible categories, some of which are not resource-related
(e.g., order-dependency). Our work, in contrast, is focusing on
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1 @Test

2 public void testIssue() throws Exception {

3 server.start();

4 countServerDownLatch.await();

5 webSocket0.connectBlocking();

6 assertTrue("webSocket.isOpen()",webSocket0.isOpen());

7 webSocket0.close();

8 assertTrue("webSocket.isClosing()",webSocket0.isClosing()

);

9 countDownLatch0.await();

10 assertTrue("webSocket.isClosed()",webSocket0.isClosed());

11 webSocket1.connectBlocking();

12 assertTrue("webSocket.isOpen()",webSocket1.isOpen());

13 webSocket1.closeConnection(CloseFrame.ABNORMAL_CLOSE, "

Abnormal close!");

14 assertTrue("webSocket.isClosed()",webSocket1.isClosed());

15 server.stop();

16 }

Figure 2: Example RAFT from the Issue677Test class in
the Java-WebSocket project [30].

resource effects and explores two mitigation strategies. For this
reason, our work leverages resource control from Linux control
groups, which provides uniform resource access control over
the entire duration of a test execution, whereas other work
(e.g., Terrani et al.’s [29] and Shaker [21]) rely on dynamic
load generation, with which tests compete for resources.

A. Example RAFT

Figure 2 shows an example of a RAFT. The test is from
the open-source project Java-WebSocket that provides an
implementation of the asynchronous websocket protocol in
Java. The test, Issue677Test checks for a specific regres-
sion, where the method isClosed continues to return the
intermediate state Closing even after the socket is discon-
nected, and the state should be Closed. Several lines not
shown in the figure create the objects server, webSocket0,
countServerDownLatch and countDownLatch0. In this
test, Line 3 starts the server, calling the asynchronous start
method. The test fixture instruments the server to notify
the countServerDownLatch once the server has completed
starting, so that the test waits at Line 4 until the server is
ready to proceed, avoiding a potential flaky failure from the
test connecting to the server before the server is started. Then,
the websocket client is closed (Line 7) and the test asserts that
the client state is set to isClosing (Line 8). Since close

is an asynchronous method, the test instruments the client
code to notify the test via the countDownLatch0 to track
when the socket is actually closed, such that the assertion
on Line 10 does not race with the close operation (again,
avoiding flakiness). Despite these efforts at synchronization to
avoid flakiness, this test is nonetheless flaky, as the assertion
on webSocket.isClosing() (Line 8) also can race with
the close operation. Rather than set the state to isClosing
immediately, the close method does so in another thread,
without synchronization.

When this test “gets lucky,” the close method gets to set
isClosing before the assertion tests it. However, if there are
insufficient CPU resources to execute the code in that other
thread quickly enough, the assertion runs before isClosing

is set. When we run this test on a 4 CPU and 16GiB RAM

virtual machine, we find that this test fails 14 out of 300
times. However, when run on a virtual machine with access to
only 1/10 of a CPU, it fails 54 out of 300 times, a significant
difference (p = 0.000198). We submitted a pull request to the
owner of the project explaining why that specific assertion was
unreliable and recommended its removal (the test has other
assertions). The owner accepted the PR.

III. METHODS AND OBJECTS OF ANALYSIS

This section describes the projects we used (§ III-A), the
setup of our experiments (§ III-B), and the research questions
we posed (§ III-C).

A. Projects

Our empirical study includes projects written in three
languages: Java, Python and JavaScript. For each language,
we selected projects by examining the literature to identify
projects previously studied in the context of flakiness. We
included projects studied by prior work if we could build the
project, run the tests, and parse the test output. In cases where
projects had missing dependencies (or other infrastructure-
related failures), we spent up to three hours per-project
manually debugging them, improving our tools if necessary.
For each project in our dataset, we create Docker containers
that have all of the project’s dependencies included, ensuring
durable reproducibility and reducing the effort needed by
researchers in the future to build on our results.

1) Java: The corpus of Java projects consists of 30 GitHub
projects selected from two datasets: 15 projects from the
FlakeFlagger dataset [31] and 15 projects from the Lam et
al. dataset [32]. We use the same versions of each of these
projects as studied in our and others’ prior work. This set
of projects has been extensively studied in the context of
flaky tests, and was originally built by searching GitHub
for issues or commits related to flaky tests. We excluded
four projects from the original FlakeFlagger dataset (three of
which manifested deadlocks and one had a broken build) and
excluded five projects duplicated in the Lam et al. dataset (all
of which are also included in the FlakeFlagger dataset).

2) Python: The corpus of Python projects consists of 12
projects selected from Parry et al.’s recent studies [33], [34].
These Python projects were selected at random from a list
of projects critical to open-source infrastructure. We first
attempted to use the exact same versions of these projects that
had been studied in prior work, but despite significant and gen-
erous assistance from the authors, were unable to successfully
build those old versions due to missing dependencies. We did
succeed at building the most recent revision of 21 of these
projects (excluding five), and created container images with
those dependencies cached to ensure durable reproducibility.
For nine of these projects, we did not observe a single flaky test
during any test execution, leaving us with 12 Python projects,
that we were able to build and for which we observed at least
one flaky test.
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3) JavaScript: We used a similar methodology to select 10
JavaScript (JS) projects, beginning by examining the projects
studied in Barbosa et al.’s investigation of flaky tests across
programming languages (six JS projects with at least five flaky
test) [35], and Yost’s flaky test detection work [36] (58 JS
projects). We used our NPM-Filter infrastructure [37] fort
building the projects, running their test suites and parsing
the test results. We ran each project under NPM-Filter, and
included in our corpus each project that completed within three
hours, and for which NPM-Filter could parse test results (i.e.,
those using the Mocha or Jest test runners). We supplemented
this set of JavaScript projects with three projects that we had
previously encountered flaky tests in: ngrok, IcedFrisby
and twilio-video-app-react. Ultimately, this resulted
in a corpus of 10 JavaScript projects with flaky tests.

These datasets are a part of recent research on flaky test
detection, which makes them ideal targets for our study and
provides baselines against which our results can be compared.
Figure 3 shows the distribution of flake rates for the flaky
tests in these projects. We note that these projects do not
provide guidelines for the resources needed to run tests. Hence,
we calculate these statistics by executing each test suite 300
times in a resource configuration comparable to the default
configuration provided by CI platforms (2 CPU cores and
8GB RAM). The flake rate is the number of failing runs
of a test divided by the total number of trials. Overall, we
observe that our dataset contains some tests that fail very
frequently in this configuration (in more than half of the
runs), while others fail more infrequently (in fewer than a
quarter of the runs). Table III lists all of these projects in
alphabetical order grouped by language. Our supplementary
artifact [23] contains URLs for the projects analyzed including
corresponding revisions used, along with links to docker
images that contain the projects packaged with all necessary
dependencies to reproduce their test suites. Table IV shows the
average test suite execution time for each of the projects in our
dataset, ranging from some as fast as just under a second, to
others as slow as 24 minutes. The median test suite execution
time in our dataset is 52 seconds.

B. Experimental setup
The experiment consists of two phases:

Phase I: This phase is designed to identify the most prominent
resource(s) responsible for RAFT.

Phase II: This phase is designed to identify the most econom-
ically prudent real-world configurations for detection and
prevention of RAFT.

During both phases, the base machine consists of a virtual
machine in our VMWare private cloud. All experiments are
run on virtual machines that are allocated 4 CPU cores and 16
GiB of RAM. Within these virtual machines, we run the test
suites in Docker containers, using Docker to further restrict
the resources available to the test suite. Each experiment is
implemented as a series of “jobs,” where each job includes
the execution of one test suite under one resource-availability
configuration to isolate the effects of resource availability on
individual test suite executions. We control the test order in test
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Figure 3: Flake rates for the flaky tests included in this study.
Each flaky test was run 300 times in a resource configuration
comparable to the default provided by continuous integration
platforms (2 CPU cores, 8 GB RAM). The flake rate is
computed as the ratio of failing runs to total runs.

Table I: Throttling configurations for Phase I. The highlighted
row shows the default configuration (no throttling). Empty
cells indicate that the value of the corresponding cell is
equivalent to that of the default configuration (Baseline).

# C M D N

Baseline 4 16 Unrestricted Unrestricted
(C) 0.1
(M) 0.5
(D) 50/100 Kbps
(N) 1500/512 Kbps
(CM) 0.1 0.5
(CN) 0.1 1500/512 Kbps
(MN) 0.5 1500/512 Kbps
(CD) 0.1 50/100 Kbps
(MD) 0.5 50/100 Kbps
(DN) 50/100 Kbps 1500/512 Kbps
(CMN) 0.1 0.5 1500/512 Kbps
(CMD) 0.1 0.5 50/100 Kbps
(CDN) 0.1 50/100 Kbps 1500/512 Kbps
(MDN) 0.5 50/100 Kbps 1500/512 Kbps
(CMDN) 0.1 0.5 50/100 Kbps 1500/512 Kbps

suite executions to avoid effects from order dependencies. The
invocation of the experiments is managed using Slurm [38],
which schedules the execution of each job of each experiment
on our cluster. To prevent interference between experiments,
only a single container was run at a time within any virtual
machine. It is worth noting that flaky test failures are inher-
ently nondeterministic. This randomness can be problematic
due to its potential to skew results on a particularly lucky (or
unlucky) run. For that reason, we run each of the 52 projects
on every configuration 300 times and record the test failures
for each run.
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Phase I: To understand the impact of different resources
(CPU, Memory, Disk, and Network), it is necessary to have
control over them and have the ability to restrict them in-
dependently. Table I shows the complete list of throttling
configurations used during Phase I of our study. Column ”#”
shows the configuration ID, column “C” shows the number
of CPUs, and column “M” shows the amount of memory in
GiBs. The column “D” (abbreviates Disk) shows the limited
rate of IO operations per second and the throughput in kilobit
per second (Kbps), respectively. Finally, the column “N”
(abbreviates Network) shows the network limit for download
and upload in Kbps respectively. The options for CPU, RAM,
and disk throttling are set using the Docker CLI. The option
for networking throttling is set using Wondershaper.1

The first row on Table I shows the default configuration,
where resources are not throttled. In our baseline configura-
tion, 4 CPU cores and 16 GiB of main memory are provided.
For comparison, the entry-level machines that GitHub Actions
provide include 2 CPUs and 7 GiB of memory, whereas
Google Cloud Build machines can be configured with as little
as 1 CPU and 4GiB of memory. Section V-D elaborates on
common entry-level configurations from other cloud vendors:
developers may turn away from the default cloud CI con-
figuration to meet higher resource requirements or optimize
cost. The non-default configurations (C)-(CMDN) from Ta-
ble I modify the values assigned to one or more resources.
We chose very small values to assign to each configuration
option (i.e., resource) with the goal of running the tests under
“limit” conditions. The precise values have been obtained
by gradually increasing from extremely low values until the
projects in our study were able to run (i.e., no failures for
builds or a majority of tests). With 4 resources that can be
restricted and a single limit value the resource is restricted
to, there are 24 possible combinations of restrictions, which
correspond to the 16 rows in Table I. The configurations (C)-
(N) throttle only a single resource at a time, and are useful to
understand the impact of individual resources on flaky failures.
We also consider all combinations of those parameters, which
helps us to answer whether certain tests are RAFTs only when
multiple resources are constrained simultaneously. These are
extreme configurations where we reduce resource availability
to an extent that is likely greater than would be experienced in
day-to-day development. These extreme configurations allow
us to provide something of a bound on the number of RAFT,
as we expect that some tests will be more likely to present as
flaky under greater restrictions. In order to examine resource
configurations that developers are more likely to experience
on a day-to-day basis, we designed Phase II of our study.

Phase II: In order to identify the most cost effec-
tive real-world cloud computing configurations for detection
and prevention of RAFTs, we examine resource configu-
rations that more closely match those available by major
cloud providers. Cloud providers offer flexible pricing for
on-demand containers-as-a-service, e.g. AWS Fargate [39],
Google Kubernetes Engine [40], and Azure Kubernetes Ser-
vice [41]. These services are priced by CPU and memory

1https://github.com/magnific0/wondershaper

Table II: AWS configurations sorted by cost [42]. Disk and
Network are unrestricted.

# CPU Mem (GiB) Cost (USD/hour)
spot on-demand

1 0.1 1 0.002548 0.008493
2 0.1 2 0.003881 0.012938
3 0.25 2 0.005703 0.019010
4 0.5 2 0.008739 0.029130
5 0.5 4 0.011406 0.038020
6 1 4 0.017478 0.058260
7 1 8 0.022812 0.076040
8 2 4 0.029622 0.098740
9 2 8 0.034956 0.116520

10 2 16 0.045624 0.152080
11 4 8 0.059244 0.197480
12 4 16 0.069912 0.233040

specifications, and provide “standard” disk and network access
services. During Phase I, we conclude that CPU has a greater
influence on test flakiness compared to memory, disk and
network. As a result, in Phase II, we consider configurations
with a different number of CPUs, assigning the lowest and
the highest memory options available on AWS for each
configuration. No restrictions are imposed on the disk and
network during this phase. As in Phase I, we ran each test suite
300 times. Table II shows the complete list of configurations
used during Phase II of our study. Column “#” shows the
configuration id, column ”CPU” shows the number of CPUs,
column “Mem(GiB)” shows the amount of memory in GiBs.
Column “Cost ($/hr)” shows the AWS computing cost per
hour of a given CPU and Memory configuration on AWS
Fargate [39] serverless compute engine. In AWS Fargate,
developers submit Dockers images to the engine and pay for
compute resources when used. We consider 12 combinations
of CPU, ranging from 0.1 to 4, and of memory, ranging from
1 GiB to 16 GiB. The AWS computing cost (measured in
USD per hour) varies with the quality of the service and the
configuration requested [42]. For a given configuration, the
cost of the “spot” service is lower compared to the cost of
the “on-demand” service. Whereas the “on-demand” service
provides guaranteed availability of the container, a “spot”
container may be interrupted and canceled by the service
provider to shed their load during peak usage times. However,
the significant savings may make it attractive for running test
suites in CI, where a canceled test suite can be restarted on
another container.

C. Research questions and methodology

We aim to answer the following key research questions:

RQ1. How prevalent are RAFTs?

Rationale. This question is important to justify further in-
vestigation on Resource-Affected Flaky Tests (RAFTs). If we
find that none of the flakiness can be attributed to resource
starvation, then further investigation is meaningless. To un-
derstand the prevalence of RAFTs in flaky test failures, we
aim to answer two key questions:

RQ1.1. How many of the flaky test failures can be attributed
to resource starvation?
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RQ1.2. How sensitive are RAFT failures to resource starva-
tion?

RQ1.1 aims to distinguish RAFT failures from other kinds of
failure to establish their prevalence. RQ1.2 aims to quantify
the effect of resource starvation on RAFT failures to establish
how likely these failures are under resource throttling.
Methodology. To answer RQ1, we consider the data for the
following attributes for each project: (i) the number of flaky
tests identified under full resource availability, (ii) the number
of flaky tests identified under all test execution configurations
combined (Table I), and (iii) the number of test failures which
can be considered RAFTs. Since a definition for RAFTs does
not exist, we present the first quantifiable definition of RAFTs.
Definition: A Resource-Affected Flaky Test (RAFT) is a flaky
test that has a statistically different failure rate when resources
are constrained compared to an unconstrained test execution.
We use Pearson’s chi-squared test to determine whether the
failure rate is statistically different, accepting that difference
as significant only at a level of p < 0.05. To reduce the false
discovery rate, we use the Benjamini-Hochberg procedure to
adjust p-values. For a given throttling configuration, a test can
be a RAFT only if it passed at least once under that same
configuration.

We use the three attributes above to answer RQ1.1. To
answer RQ1.2, we consider the increase in failure rates for
every unique test case. Such increase is defined as the ratio
fi/max(f1, 1), where fi is the number of failures under the
most failure-inducing throttling configuration and f1 is the
number of failures under the configuration with no resource
throttling. The ratios are then grouped by different levels of
increase in failure rate.

RQ2. Which resources have the strongest influence on flaki-
ness?
Rationale. This question is important to justify further inves-
tigation of the relationship between resource availability and
test flakiness. If we find that the relationship is weak, then
further investigation is meaningless. To understand the effect
of machine resources on flaky test failures, we aim to answer
two questions:
RQ2.1. What resources are most common at triggering flaky

test failures?
RQ2.2. Are some flaky tests only detected when using

different combinations of resources?
RQ2.1 aims to study the effect that throttling individual
resources has on flaky test failures. RQ2.2 aims to study
the effect that throttling combinations of resources has on
flaky test failures and whether this produces results that are
significantly different to throttling individual resources. It
is important to explore each resource independently and in
combinations to understand their impact. The resources or
combinations with the most impact can then be chosen for
further analysis.
Methodology. To answer RQ2, we compare the number of
RAFTs detected under each throttling configuration shown in
Table I. Each throttling configuration limits availability of one
to four resources. We compare the number of RAFTs detected

by each configuration, analyzing the configurations that detect
each RAFT.

RQ3. Which configuration best saves money while running the
test suite to prevent RAFTs?
Rationale. In a typical usage of continuous integration, devel-
opers want to simultaneously (1) avoid flaky tests to reliably
determine whether a bug is present in code when observing test
failures and to (2) run tests efficiently, i.e., maximize test runs
per amount of money. This question focuses on this scenario.
More precisely, it investigates which resource configurations
give the lowest flaky test disruption per amount of money for
given a project.
Methodology. To answer RQ1 and RQ2, we examined the
total RAFTs detected across all 300 test suite invocations.
To answer RQ3, we study instead the number of test suite
invocations (i.e., builds) that have at least one flaky-test failure.
We consider two metrics for every resource configuration
listed in Table II: (i) the number of builds with test failures
across all test runs (as a proxy for reliability) and (ii) the
price per-test suite run. We calculate the price per-test suite
run by multiplying the average time to run the project’s test
suite (as reported by the build system) by the “on-demand”
AWS Fargate cost shown in Table II. The configurations
with the least number of build failures are considered the
most reliable. However, there may be other configurations
which have slightly higher rate of build failures but are more
cost effective. It is worth noting that configurations with a
lower hourly rate can take longer to complete due to limited
resources, resulting in a higher cost for each build compared
to an expensive but fast configuration. For every configuration
in Table II, we consider the number of projects for which it
had the best price, best reliability, or both.

RQ4. Which configuration best saves money while running the
test suite to detect RAFTs?
Rationale. In another use case, developers may want to (1) de-
tect flaky tests in advance (i.e., before observing potentially
spurious failures during regression runs) and (2) run tests effi-
ciently. This question focuses on this scenario. More precisely,
it investigates which configurations maximize the ability of test
runs to detect flaky tests while keeping costs at a minimum.
Methodology. To answer RQ4, we consider two metrics for
every resource configuration listed in Table II: (i) the number
of flaky test failures (as a proxy for reliability of detection) and
(ii) the price per run. As with RQ3, we calculate the price per-
run by multiplying the average time to run the project’s test
suite (as reported by the build system) by the “on-demand”
AWS Fargate cost shown in Table II. Intuitively, cheaper
configurations are more likely to detect flaky test failures,
but they may not be the most cost effective due to slower
execution times. Furthermore, some configurations may be
entirely unusable for some projects - for example, when a
project’s tests require some minimum amount of memory to
run at all. Hence, it is necessary to consider computing cost
for this analysis. For every configuration in II, we consider
the number of projects for which it had the best price, best
detection, or both.
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Table III: For each project with flaky tests, we report the baseline number of flaky tests identified without resource throttling
(Baseline Flaky) and the number of flaky tests identified as RAFT under each throttling condition. Throttling conditions are
identified by the resources throttled, i.e., CPU(C), Memory(M), Disk(D), Network(N), and combinations thereof. “Total, All
Runs” summarises all flaky tests (and RAFT) detected including the Phase II (AWS) configurations. Some projects resulted in
catastrophic failures under certain configurations that are indicated as ”-”.

Baseline
Flaky

Flaky Tests Identified as RAFT Under Throttling Conditions Total, All Runs

Language Project (C) (M) (D) (N) (CM) (CN) (MN) (CD) (MD) (DN) (CMN) (CMD) (CDN) (MDN) (CMDN) Flaky RAFTs

Java

assertj-core 1 1 - 0 0 1 1 0 1 - 0 - 1 1 0 1 3 1
carbon-apimgt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1
commons-exec 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 3 1
db-scheduler 5 2 0 0 0 2 6 0 2 0 0 6 2 2 0 6 7 6
delight-nashorn-sandbox 1 17 1 0 0 24 20 0 16 0 0 24 23 19 0 23 27 24
elastic-job-lite 0 0 - 0 0 - 0 0 0 0 1 - - 0 - - 1 1
esper 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
excelastic 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 2 1
fastjson 0 0 - 0 0 2 0 - 0 - 0 2 2 1 - 2 3 2
fluent-logger-java 0 1 0 0 0 2 1 0 1 0 0 2 2 1 0 2 5 2
handlebars.java 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
hector 2 0 0 0 0 0 - 0 - 0 0 - 0 - 0 - 2 0
http-request 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
httpcore 4 1 0 0 0 1 1 0 1 0 0 2 1 1 0 1 22 2
hutool 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
incubator-dubbo 3 23 - 0 0 - 25 - 25 - 0 - - 22 - - 55 27
java-websocket 22 16 7 0 1 22 20 5 18 8 0 24 24 19 8 22 37 32
logback 6 7 0 0 0 7 6 0 8 0 0 9 - 6 0 8 28 12
luwak 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 4 2
ninja 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
noxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
orbit 2 2 0 0 0 2 2 0 2 0 0 2 2 2 0 2 6 2
oryx 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
riptide 0 1 2 0 0 1 1 0 1 0 0 1 1 1 0 1 5 3
rxjava2-extras 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1
spring-boot 0 0 - 0 0 - 0 - 0 - 0 - - 0 - - 3 0
timely 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
wro4j 7 5 - 0 0 - 5 - 5 - 0 - - 5 - - 13 6
yawp 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1
zxing 2 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 2 0

30 Projects Total 70 79 10 0 1 68 93 5 84 8 1 75 61 84 8 71 256 128

JavaScript

apollo-client-devtools 0 11 - 0 0 - 8 - 10 - 0 - - 13 - - 21 13
IcedFrisby 1 0 0 0 0 0 9 10 9 10 9 10 0 0 10 9 16 11
javascript-action 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
ngrok 2 0 0 0 0 0 0 0 1 0 0 0 1 2 0 1 8 2
preset-modules 0 2 0 0 0 1 1 0 2 0 0 1 1 1 0 1 2 2
react-datetime 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 2 2
react-native 1 3 0 0 0 3 3 0 3 0 0 - 3 4 0 3 17 10
shields 0 5 0 0 0 5 5 0 5 0 0 5 5 5 0 5 6 6
tippyjs-react 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
twilio-video-app-react 0 6 - 0 0 - 6 - 8 - 0 - - 8 - - 18 8

10 Projects Total 4 28 0 0 0 10 33 10 39 10 9 17 12 35 10 20 92 56

Python

celery 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
conan 0 0 0 2 0 0 0 0 2 2 2 0 2 2 2 2 6 2
electrum 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1
fonttools 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
ipython 0 0 0 0 0 0 0 0 3 0 0 0 3 3 0 3 4 3
loguru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0
mitmproxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
requests 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
seaborn 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 2 1
setuptools 8 0 52 10 0 52 0 52 13 60 11 52 56 14 62 57 177 89
sunpy 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 11 1
xonsh 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 10 2

12 Projects Total 12 2 54 12 0 56 1 54 20 65 14 55 64 20 67 65 260 99

52 Projects Total 86 109 64 12 1 134 127 69 143 83 24 147 137 139 85 156 608 283

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3462251

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8

IV. RESULTS

A. Answering RQ1: How prevalent are RAFTs?
This research question evaluates prevalence of Resource-

Affected Flaky Tests (RAFTs) among flaky tests. Table III
summarizes the results of 300 test runs on each of the 52
projects for every throttling configuration in Table I. For every
project in the table, the column “Baseline Flaky” contains the
number of flaky tests identified under no resource throttling.
The columns “Flaky” and “RAFTs” under “Total, All Runs”
represent the total number of flaky tests identified across all
configurations, and those unique tests which can be consid-
ered RAFTs, respectively. The remaining columns show how
many RAFTs were observed by throttling different kinds of
resources: CPU (C), Memory (M), Disk (D), or Network (N),
and combinations thereof.

1) RQ1.1 How many of the flaky test failures can be
attributed to resource starvation?: With no resource throttling,
we observed a total of 86 flaky-test failures when running
the tests of each project for 300 times and aggregating
results across all 52 projects. Across all configurations, we
observed a total of 608 flaky test failures, of which 283 tests
were classified as RAFTs. The highest number of RAFTs
identified in a single Java project is 32 in java-websocket

(=86.48% of the total of flaky tests on that project). Within the
JavaScript projects apollo-client-devtools showed the
highest number of RAFTs (13, or 61.90% of total flaky tests
in that project), and within the Python projects, setuptools
showed the highest number of RAFTs (89, or 50.28% of the
total flaky tests in that project). We observed no RAFTs in 15
projects of 52 projects. Note that the number of test runs for
all combinations of resource throttling is significantly greater
than that for no resource throttling (4,500=300*15 versus 300).
We run baseline configuration and every other configuration
for 300 times. This, in conjunction with potentially increased
failures in RAFTs due to throttling accounts for the difference
in the numbers between the columns “Baseline Flaky” and
“Total, All Runs/Flaky”.

Summary: Of all flaky tests detected in our
study, we find that 46.5%(=283/608) of them are

RAFTs.

2) RQ1.2 How sensitive are RAFT failures to resource
starvation?: The barplot in Figure 4 shows the distribution of
tests on various “resource-affectedness” levels for each project
that contains RAFTs. A level is defined as the increase in fail-
ure rate relative to the baseline “no throttling” configuration.
The colors indicate different levels. For example, dark green
denotes a test that is not resource affected, while red indicates
a test that is severely resource affected. The length of each
bar denotes the number of flaky tests found with throttling
runs, i.e., it corresponds to the value in column “Total, All
Runs/Flaky” on Table III.

Based on Figure 4, we observe that the level of resource-
affectedness varies with each project. Most projects contain
RAFTs which are slightly affected by resources with an
increase in failure rate of less than 25x (shown in light

green). Some projects such as incubator-dubbo for Java,
IcedFrisby for JavaScript, and setupTools for Python
have a large number of RAFTs that are heavily affected by
resource availability with an increase in failure rate of over
200x. RAFTs that are heavily affected by resources are quite
uncommon and mostly exist in small numbers in few projects.
We should note that RAFTs that are heavily affected by
resources may already be well-known to developers, as they
are clearly very sensitive to resource availability, and are quite
likely to fail if resources are unavailable. On the contrary, the
most commonly-occurring RAFTs in our experiment (shown
in light green, those that increased in failure rates more
marginally), may be the most dangerous, since developers
are less likely to make the connection between the flaky-
test failures and resource availability. Heavily affected RAFTs
on the other hand, can fail two or hundreds of times more
frequently than normal and are therefore easier to identify.
Section V-A describes developer feedback to the RAFTs that
we identify.

Summary: Most commonly, RAFTs are slightly
affected by resources. In a 0-300 scale of

resource-affectedness, the most predominant
range is 1-50.

B. Answering RQ2: Which resources have the strongest influ-
ence on flakiness?

This research question evaluates the impact of individual
resources and their combination on test flakiness. Table III
summarizes the test failures for 300 runs on all configurations.
The columns (C), (M), (D), and (N) contains the number of
test failures for throttling of individual resources. The columns
after those show the test failures for combinations of these
resources.

1) RQ2.1 What resources are most common at triggering
flaky test failures?: We begin by examining the characteristics
by language. Across all 30 Java projects, we observed 82 test
failures under CPU throttling, 10 under memory throttling,
one under disk throttling, and one under network throttling.
Across all 10 JavaScript projects, we see a similar pattern: we
observed 28 failures under CPU throttling, zero under mem-
ory throttling, 1 under disk throttling, and 1 under network
throttling. This trend breaks among the 12 Python projects,
apparently due to the influence of a single project (setup-
tools): we observe only two failures under CPU throttling, 54
under memory throttling, 13 under disk throttling, and zero
under network throttling. This behavior might be explained
by different minimum memory requirements across projects:
our “memory” throttling configuration allows only 512MB of
RAM, which was insufficient to even run tests for some of
the projects with the most RAFTs in other languages (e.g.
incubator-dubbo, apollo-client-dev-tools), whereas this amount
appeared to be just enough to run the tests in setuptools,
albeit sufficiently little to cause many flaky test failures.
However, what is clear from the results is that disk and
network throttling play a much more minor role in causing
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Figure 4: Just how resource affected are these flaky tests? For each project with flaky tests, we show the failure increase rate
from the baseline “no throttling” configuration to the most failure-inducing resource throttling condition.
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flaky test failures. Hence, we conclude that CPU starvation is
the most significant and ubiquitous factor for increasing test
failures, while memory throttling may also be impactful.

Summary: The resource that triggers flakiness
most frequently in Java and JavaScript projects

in our dataset is CPU, and in Python is memory.

2) RQ2.2 Are some flaky tests only detected when using
different combinations of resources?: Recall that, according to
our definition, a RAFT is a test that has a statistically greater
failure rate in at least one resource-throttled configuration, as
compared to its baseline failure rate (under no throttling). Of
the total of 283, we identified 24 tests that were RAFTs in
only one configuration. In each case, the absolute difference
in failures was relatively small, ranging from an increase
between seven and 23 additional failures observed under the
single configuration that exposed the test as RAFT and the
baseline failure count. To further investigate these tests, we
use Pearson’s chi-squared test to determine whether there
were other throttling configurations that resulted in failure
rates that were statistically indistinguishable from that single
RAFT case. In all but three cases, we found at least one
other throttling configuration that induced the RAFT to fail
at a rate that was indistinguishable from both the RAFT-
inducing configuration and the baseline configuration. Two of
these tests belonged to the Python project setuptools, and
were RAFTs only in the CMD configuration. The last test
belonged to the Java project riptide, and was flaky only in
memory-throttling configurations, failing persistently in CPU-
throttled configurations. We conclude that it is unlikely that it
is necessary to examine every resource configuration in order
to detect RAFTs, and simply increasing the number of trials
may be sufficient to increase confidence levels. Nonetheless,
in projects where tests are known to rely on disk input/output
(such as in the case of the setuptools project), adding disk
throttling combinations may help to detect RAFTs.

Summary: RAFTs rarely manifest only in
specific throttling configurations. Of the 283

RAFTs, 24 of them manifested only in one of
the 15 configurations.

C. Answering RQ3: Which configuration best saves money
while running the test suite to prevent RAFTs?

This research question evaluates the reliability of test exe-
cution and cost for each AWS configuration. To answer this
question, we analyzed the percentage of build failures and
the price to run every project on each AWS configuration
in Table II. Figure 5 summarizes the results as a stacked
bar chart ranking each configuration on price, reliability, and
both. Some projects may run with equal reliability on more
than one configuration but have different price points. In such
cases, the project is only shown under the “Best Reliability
and Price” category. Conversely, some projects may show

significantly different behavior at drastically different price
points on different configurations.

Figure 5 shows that the best configuration for reliability and
price largely depends on individual projects. We observe that
the price of builds does not scale linearly with the price of
configurations. Configurations with lower resources generally
have a lower billing rate. However, the constrained resources
can make individual builds significantly slower. As a result,
it can often be more expensive to run builds on cheaper
configurations compared to those with slightly higher billing
rates. Whether or not this is the case depends on how a
project utilizes resources. If a project is CPU-heavy and the
CPU is constrained, this may result in longer execution times
and higher costs. If, on the other hand, a project is I/O-
heavy, limiting CPU time does not affect execution time and
costs as much. In addition, some projects could not be run
on low-resource configurations due to catastrophic failures
(e.g., deterministically running out of memory). The minimal
amount of resources required for execution are also project-
specific. Hence, the most reliable and most cost-effective
configurations vary based on the projects. We observed that
the configuration “CPU 0.5 and RAM 2GiB” is the most cost
effective configuration, followed by “CPU 2 and RAM 4GiB”
and “CPU 1 and RAM 4GiB.” We observed that the most
reliable configurations are “CPU 0.5 and RAM 2GiB” and
“CPU 2 and RAM 4GiB”. A table showing the price and
reliability of each configuration for each project is included
in the appendix to this article.

Adopting a lower-resource configuration can also lead to an
increase in latency, as tests may run slower. Table IV shows
the average test suite execution time for each of the projects,
along with the slowdown under each configuration, with the
slowdown of the cheapest, most reliable configuration bolded.
Not surprisingly, reducing the number of CPU cores available
has a significant impact on feedback time. We discuss tradeoffs
in selecting CI resource configurations further in Section V-D.

Summary: The most cost-effective configuration
to prevent RAFTs largely depends on the

project.

D. Answering RQ4: Which configuration best saves money
while running the test suite to detect RAFTs?

This research question evaluates the reliability of test fail-
ures and cost for each AWS configuration. To answer this
question, we analyzed the number of test failures and the cost
to run every project on each AWS configuration in Table II.
We expect that the total cost savings will be quite small for the
projects that we studied, as Table IV shows that the median
test suite execution time was just 52 seconds (Section V-D1
discusses the absolute cost savings and estimates a maximum
of $0.48/month). Figure 6 summarizes the results as a stacked
bar chart ranking each configuration on price, detection, and
both. As discussed in the prior sub-section, the cost for
individual runs depends on their execution time and can,
thus, vary significantly for different configurations. The cost
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Figure 5: What are the best resource configurations to prevent flaky failures? For each configuration that we analyzed, we
show the number of times that it was the best at avoiding flaky failures, the best in terms of price, or the best in terms of both.
If a configuration was tied for best in terms of reliability for a project, we select the cheaper one. We hide configurations that
were not optimal on either dimension.

of execution on cheaper configurations can be more than the
cost of execution on expensive configurations because weaker
configurations entail a longer execution time. Similar to RQ3,
Figure 6 shows that the best configuration for detecting flaky
test failures and obtaining best price depends on individual
projects.

The most cost-effective and failure-detecting configurations
vary based on the projects. We observe that the configuration
“CPU 2 and RAM 4” is cost-effective for flaky test detection
on many projects but it is never the best configuration for
detecting flaky failures in a given project. We observe that the
configuration “CPU 0.1 and RAM 1GiB” is best for detecting
test failures in many projects, but is rarely most cost effective.
The configuration “CPU 0.5 and RAM 2GiB” combines the
desirable properties of the previously discussed configurations
for our dataset and provides the highest number of flaky
test detections for many projects, while also offering the
best cost-effectiveness for many other projects. Coincidentally,
this configuration ranked most commonly as “best price and
detection” and for “best price and reliability,” but not for the
same projects.

Our experiments confirmed the presence of known flaky
tests, and also detected some that were not previously reported
in research literature. Considering the 30 open-source Java
projects that we studied, we identified 256 flaky tests, of
which 154 had been reported in prior literature [31], [43] and
102 that have not. Of the 128 flaky tests in these projects
that we confirmed as RAFT, 75 had been reported as flaky
in prior literature, and 53 had not. These Java projects have
been studied far more extensively (re-run thousands of times
by multiple research groups) than the Python and JavaScript
projects (re-run dozens or hundreds of times by a single
group). Considering the 10 open-source JavaScript projects in
which we detected 92 flaky tests, prior research [36] did not
detect any flaky tests. Considering the 12 open-source Python
projects in which we detected 260 flaky tests, 9 were detected
in prior research [34], and 251 were not reported in prior
literature.

Summary: The most cost-effective configuration
to detect RAFTs largely depends on the project.

V. DISCUSSION

Our study confirms the presence of resource-affected flaky
tests (RAFTs) in open-source Java, JavaScript, and Python
projects. Rather than spend time trying to repair RAFTs,
developers can immediately and directly reduce their failure
rate by increasing the resources available when running them.
Our experiments find that the presence and impact of RAFTs
can vary substantially between projects. While some of these
failures might be obvious—in the case of incubator-dubbo,
we find tests that failed in almost every single run when
executed with restricted resources—other tests have a more
subtle dependency on system resources. As test suites grow
and resources are increasingly stretched thin to run more
test suites concurrently, developers should be aware of slowly
increasing flaky test failure rates.

Projects with mostly small, deterministic tests are less likely
to be impacted by resource-related flakiness than projects
with large, resource-dependent integration tests. By specifying
the expected resource requirements for reliably running tests,
developers can reduce the occurrence of RAFT-related failures.
In this section, we describe our experiences reporting these
concerns to developers, provide a qualitative discussion of an
exemplar non-RAFT flaky test, and discuss implications for
future research in flaky tests.

A. Feedback from developers
To gain further insight into the implications of our study,

we contacted developers of projects in which we detected
RAFTs and suggested they update the project specifications
(e.g., README.md) with the minimal resource configurations
that should be used to mitigate RAFTs. As developers are
likely more hesitant to accept changes related to their projects’
specifications (than typical, code-related changes), we open
issue reports on only a subset of our evaluation projects to
gauge developers’ interest in our findings—specifically, we
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Table IV: Average test suite execution time (seconds) under the baseline 4CPU, 16GiB RAM configuration and average seconds
slowdown (positive values) or speedup (negative values). Bolded values indicate the cheapest, most reliable configuration for
that project.

CPU 0.1 CPU 0.25 CPU 0.5 CPU 1 CPU 2 CPU 4
Project Baseline 1G RAM 2G RAM 2G RAM 2G RAM 4G RAM 4G RAM 8G RAM 4G RAM 8G RAM 16G RAM 8G RAM

Java

assertj-core 8.56 227.43 225.22 76.68 32.15 31.59 11.04 10.68 1.42 1.34 1.33 -0.15
carbon-apimgt 27.50 130.53 129.03 43.13 18.04 17.74 5.99 5.80 0.64 0.63 0.63 -0.03
commons-exec 55.77 68.60 68.52 22.48 8.77 8.69 2.45 2.43 0.12 0.11 0.16 0.00
db-scheduler 13.98 81.48 79.50 26.76 10.85 10.70 3.50 3.44 0.25 0.22 0.27 -0.04
delight-nashorn-sandbox 18.15 464.71 440.55 140.98 58.55 55.97 18.43 18.23 0.36 0.98 1.45 -0.57
elastic-job-lite 40.15 356.55 348.77 106.24 41.22 39.35 12.00 11.99 0.84 0.81 0.92 0.03
esper 9.15 95.53 94.48 31.68 12.99 12.71 4.29 4.21 0.46 0.44 0.44 0.01
excelastic 7.84 85.22 82.09 27.71 11.37 11.23 3.60 3.63 0.25 0.21 0.19 -0.05
fastjson 34.61 534.06 530.96 178.63 73.43 73.63 23.24 21.33 2.25 2.32 3.49 -0.54
fluent-logger-java 35.24 97.20 94.77 31.30 12.90 12.64 4.08 3.82 0.58 0.58 0.34 0.27
handlebars.java 7.67 168.44 166.77 56.76 23.98 23.52 8.02 8.00 0.78 0.74 0.78 -0.02
hector 32.39 537.63 528.89 176.08 69.14 68.72 19.57 18.72 0.06 0.18 0.12 0.02
http-request 3.07 71.67 68.96 22.97 9.49 9.33 3.11 3.02 0.25 0.24 0.23 0.02
httpcore 13.40 142.43 137.68 45.04 18.36 17.96 5.37 5.16 0.34 0.32 0.33 -0.01
hutool 2.49 61.16 60.60 20.37 8.63 8.36 2.86 2.86 0.27 0.27 0.24 0.01
incubator-dubbo 1,472.56 167.72 164.48 52.56 25.12 23.70 7.08 7.11 0.98 1.09 0.84 0.01
java-websocket 10.35 121.45 122.69 42.49 16.99 16.50 5.73 5.63 0.71 0.66 0.69 -0.05
logback 223.59 91.49 101.92 19.57 9.13 22.15 10.35 10.74 0.76 0.87 0.59 -0.19
luwak 11.07 164.87 166.13 52.35 21.56 20.86 7.02 6.72 0.60 0.61 0.66 -0.01
ninja 17.80 335.01 328.09 109.23 44.97 43.78 14.45 14.64 0.73 0.67 1.13 0.09
noxy 18.01 361.16 356.28 122.18 50.79 49.92 16.94 16.80 1.80 1.55 1.80 0.09
orbit 10.31 122.09 126.11 42.26 17.41 17.60 5.90 5.73 0.78 0.72 0.61 -0.04
oryx 28.74 110.11 110.13 36.44 14.87 14.55 4.91 4.86 2.49 2.48 2.49 -0.01
riptide 15.15 171.60 169.53 59.47 29.88 29.66 16.63 16.54 10.67 10.68 10.67 0.01
rxjava2-extras 49.65 270.56 272.01 90.07 35.47 35.28 10.08 9.65 1.74 1.62 2.01 -0.55
spring-boot 91.53 1,640.48 1,621.49 544.73 217.67 216.10 72.82 71.24 4.87 4.88 4.92 -0.97
timely 11.15 328.17 314.87 107.61 43.95 42.51 14.96 14.52 1.87 1.91 2.01 -0.05
wro4j 74.69 3,319.11 2,000.16 726.08 322.79 310.57 119.61 114.43 28.17 23.26 22.54 0.41
yawp 7.36 111.09 111.62 36.81 15.16 14.92 5.04 4.98 0.54 0.55 0.56 0.02
zxing 66.83 764.28 765.47 251.67 89.36 89.33 10.29 10.41 0.70 0.57 0.71 0.09

JavaScript

apollo-client-devtools 21.14 - 836.01 239.46 98.62 123.91 47.37 40.90 11.10 11.14 11.15 -0.19
IcedFrisby 15.56 4.21 4.14 1.09 0.25 0.12 0.02 -0.05 -0.02 -0.01 -0.02 -0.03
javascript-action 852.01 2,944.00 3,437.00 1,069.00 431.00 252.00 25.00 35.00 -1.00 1.00 -3.00 -4.00
ngrok 6.43 14.36 14.17 3.78 0.68 0.54 -0.44 -0.58 -0.55 -0.75 -0.80 -0.51
preset-modules 8.95 356.16 336.12 132.46 57.65 54.27 21.80 22.10 5.82 6.20 6.12 -0.14
react-datetime 3.39 16.13 15.29 5.11 1.95 1.98 0.46 0.46 0.05 0.02 0.02 -0.01
react-native 59.16 - 1,761.38 745.77 335.32 324.85 114.02 113.28 25.84 25.53 27.52 1.47
shields 0.82 10.51 10.61 3.63 1.35 1.34 0.26 0.24 -0.01 0.00 -0.01 0.00
tippyjs-react 4.95 213.68 207.47 73.10 31.65 30.33 12.54 12.17 3.48 3.51 3.49 0.01
twilio-video-app-react 86.01 - - 541.41 224.16 139.64 28.91 160.25 2.70 33.22 37.13 -0.01

Python

celery 111.36 6.15 6.15 6.15 6.15 82.70 -0.67 0.65 -0.17 -0.65 -0.22 -1.26
conan 690.56 6,159.97 5,961.89 1,879.60 591.21 590.22 7.99 12.65 4.76 8.96 -1.86 0.09
electrum 83.35 657.47 658.99 209.34 62.13 66.87 0.35 0.84 0.33 0.44 1.37 0.31
fonttools 28.18 269.92 268.89 87.27 28.64 28.75 0.16 0.08 -0.26 0.01 -0.08 0.07
ipython 53.83 277.28 274.08 85.94 28.43 28.33 0.62 0.46 -0.18 -0.04 0.11 -0.09
loguru 82.52 301.01 355.34 95.33 28.10 30.03 -0.10 1.16 0.60 -0.08 0.08 -1.30
mitmproxy 26.81 208.42 203.08 66.69 21.67 21.91 0.10 -0.02 -0.06 0.08 0.02 0.03
requests 103.03 18.89 19.62 6.39 1.94 1.78 -0.07 -0.02 0.02 -0.04 -0.14 -0.18
seaborn 526.53 - 3,602.62 v1,295.04 580.38 580.52 189.93 193.15 47.45 48.64 50.52 -0.85
setuptools 857.70 3,746.12 3,829.87 864.35 40.80 36.10 5.34 5.06 0.38 -2.54 -3.62 -0.52
sunpy 167.72 1,790.21 1,807.60 609.78 224.48 225.18 35.91 36.53 10.60 11.04 11.08 -0.50
xonsh 80.92 818.52 828.30 257.04 86.68 84.42 2.23 2.02 -0.34 -0.23 0.22 0.70

CPU 0.1 and RAM 1GiB 
CPU 0.1 and RAM 2GiB 

CPU 0.25 and RAM 2GiB 
CPU 0.5 and RAM 2GiB
CPU 0.5 and RAM 4GiB

CPU 1 and RAM 4GiB
CPU 1 and RAM 8GiB
CPU 2 and RAM 4GiB
CPU 2 and RAM 8GiB

CPU 2 and RAM 16GiB
CPU 4 and RAM 8GiB

0 5 10 15 20 25 30 35 40 45
Number of Projects

Configuration Ranked As
Best Price
Best Detection
Best Price and Detection

Figure 6: What are the best resource configurations to detect flaky failures? For each configuration that we analyzed, we show
the number of times that it was best at detecting flaky tests (number of unique flaky tests detected), the best in terms of price,
or the best in terms of both. If a configuration was tied for best in terms of detection for a project, we select the cheaper one.
We hide configurations that were not optimal on either dimension.
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start by engaging with developers only for our Java-based
projects. We next describe the process by which we contacted
developers, along with a summary of the developers’ responses
to our recommendations.

1) Overview: First, we identify Java projects from our
evaluation that:

• are active, i.e., had a commit or developer interaction on
issues or pull requests in the last three years (this resulted
in only 18 of the 30 projects);

• are runnable, i.e., could be cloned at their latest version,
the code compiles, and the tests run (all 18 ran);

• had a flaky test in their latest revision, i.e., we run the
project test suites 300 times in each of the 12 throttling
configurations from Table II, and keep the projects that
have at least one RAFT (14 of the 18 projects had at
least one RAFT). The latest version of each project that
we used is in our artifact [23].

For each of the remaining 14 projects, we initiate com-
munication with developers by creating an issue, either via
GitHub or on the project’s custom issue tracking system, that
clearly indicates which tests are RAFTs, how to reproduce
the issue (with step-by-step instructions on how to clone the
code, build the Docker container, and run the tests), and which
configuration likely prevents RAFTs.

2) Feedback: For 14 projects that we initiated commu-
nication with, six have responded to us and the remaining
eight are still pending with no response. In two of the six
projects [44], [45], developers quickly asked for or created
their own PRs with minimum required resources to avoid
RAFTs after we reached out. In two other projects [46],
[47], developers initially expressed confusion to the concept
of RAFTs and did not understand why stating minimum
requirements for running tests were relevant. However, after
follow-up comments describing how the RAFT configurations
were plausible cases in which a contributor might run their
tests, the developers agreed with our concern and accepted
our proposed documentation changes. Lastly, there were two
projects [48], [49] in which developers felt that the change
to documentation was not appropriate, noting that these tests
might be flaky “regardless of resources” and preferred to create
a task to improve those tests to reduce their flakiness directly.

3) Discussion: There were common threads throughout our
interactions with developers.

First, developers generally want to reduce the flakiness in
their test suites, but are more focused on fixing tests to make
them less flaky. In http-core [46], [50], the developer was
initially quite dismissive, and eventually acquiesced with the
caveat that they would “rather see efforts spent on analyzing
the failing test cases and fixing them”. The developer in
shardingsphere-elasticjob [49] simply linked our
issue to another flaky-test related issue, and eventually fixed
the flakiness by using more robust assertions. These developers
were not convinced that poorly provisioned machines can lead
to more flakiness, perhaps because they do not experience
the flakiness on their own machines or believe that their
application would be used on such machines.

In fact, developers of the timely [48] project had diffi-
culties imagining their applications/test suites would be run

in resource-constrained environments. The developer was not
interested in specifying minimum resources because they
said their application is “designed to work with Apache
Accumulo, an inherently ‘big data’ application”. Similarly,
in db-scheduler [47], [51], the developer said that they
always “run the tests on a multicore machine”. In these situa-
tions, noting that different developers have different machine
specifications helped. (Note that suggesting asynchronously
executing test suites in cloud environments may also have
convinced developers, though we did not try this suggestion.)

There are also developers like those in
delight-nashorn-sandbox [45] and dubbo [44]
that were immediately interested in our fixes. In fact, the
developer of the former created a new test that failed if system
specifications were not adequate to better inform developers
that RAFT failures may be occurring. This example highlights
how developers may be content with simple RAFT mitigation
strategies.

In summary, we reached out to the developers of 14 Java
projects regarding RAFTs and the minimum machine spec-
ifications their projects’ should run in to avoid RAFTs. Of
the 14 projects we reached out to, developers of six projects
have responded to us, while the remaining eight are pending
with no response. Of the six that responded, developers of four
projects have improved their project based on our suggestions,
while the remaining two indicated that they prefer actual fixes
over specification clarifications.

B. Qualitative examination of flaky tests

To complement our statistical analysis, we also provide a
qualitative discussion of exemplar an unusual non-RAFT flaky
tests.

1) Non-RAFT flaky tests: Of course, not all flaky tests
are RAFTs. We provide a qualitative discussion of two
flaky tests that we observed in our dataset, which are
not RAFTs. The Timely [52] project contains two tests
from the class TimeSeriesGroupingIteratorTest that are
flaky but non-RAFT: testTimeSeriesDropOff and test-

MultipleTimeSeriesMovingAverage. The goal of these
tests is to check that the averages of numeric values in two
data structures are the same. However, the tests use time-based
random number generation, which results in unpredictable and
unreliable test results.

The flakiness of these tests is not dependent on the environ-
ment in which they are run, but rather on the time in which
they are run. A developer can run the same test multiple times,
even in different environments, and get different results each
time. In our experiments, we observed that these tests were
flaky in all configurations. In the baseline configuration, the
tests failed eight times in 300 runs, while in other configura-
tions, the tests failed at least once and up to 12 times. Our
findings for this test are confirmed by our prior anlaysis [53],
which also described these tests to be flaky due to time. In
fact, that prior analysis found a 2.6% failure rate for these
tests, which translates to roughly eight failures in 300 runs.
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C. Implications for researchers

Much interesting and important research can build on and
extend this study. A notable limitation of this study is its
reliance on relatively short-building, open-source projects.
Future work should confirm the impact of RAFT in closed-
source projects, and might also explore approaches to automat-
ically triage and repair RAFT. Without such validation, it is
challenging to evaluate the direct impact of flaky test research
on the practice of software engineering.

Conducting such research can be challenging, as it requires
running test suites, requiring industrial collaborators to provide
access to a complete codebase and a suitable environment for
running it. However, the complexity of the study may be worth
the investment, as our anecdotal evidence from conversations
with practitioners suggests that RAFT could be an even larger
concern at some companies than in the open-source projects
that we studied. Specifically, open-source projects with very
limited budgets for continuous integration (e.g. relying on the
limited free tiers of services) have a limited tolerance for long-
running, frequently failing continuous integration pipelines.
Companies that are racing to spend investor money and launch
a product as soon as possible may have different incentives. Do
companies with fast-release schedules and a healthy flow of
revenue to pay the CI bills end up with flakier and longer-
running test suites than the open-source projects that we
studied? We believe that there is no single definitive answer
to this question yet it strongly motivates future research and
industrial collaborations.

This study also may have implications for other flaky test
research. One line of flaky test research has focused on de-
tecting flaky tests, generally by re-running them hundreds [24]
or thousands [31], [53] of times to detect unlikely failures.
We have found that these experiments can be conducted more
cost-effectively by reducing the resources that are used for
each test execution: providing each test suite with 4 CPUs
and 16GiB of RAM may be an over-provisioning of resources.
As these experiments can involve (re-)running a test suite
tens of thousands of times, there may still be a noticeable
improvement even for test suites that take under a minute
to complete. From our experiments, we found that as long
as there is enough RAM available to reliably complete a
test suite execution without reaching a fatal out-of-memory
error, reducing resources available to a test suite increases
the number of flaky tests detected. Rather than deploying
“stressor” tasks that acquire CPU and RAM in an effort to
starve tests of resources [21], [29], it may be substantially
cheaper to simply limit the resources available to those tests,
and use those resources for other purposes.

Surveys of developers show that detection of flaky tests is
a less pressing problem than the mitigation of flaky tests [54].
This article outlines a simple, yet effective approach for
mitigating the impact of flakiness in test suites, when that
flakiness is tied to resource availability. Researchers should
investigate other approaches to reduce the incidence of flaky
failures, considering factors beyond the test code itself, such
as environmental factors. Our supplemental artifact includes
our dataset and the scripts used to detect RAFTs from test

executions [23].

D. Implications for Continuous Integration Infrastructure

Cloud-based continuous integration (CI) systems have be-
come increasingly popular. Major cloud vendors provide CI
services, such as Amazon’s CodeBuild [55], Microsoft’s Azure
DevOps Pipelines [56] and Google Cloud Build [57]. We
reviewed the pricing and configuration options available for
popular cloud-based CI services, to see how the configura-
tions aligned with the resource configurations that we evalu-
ated. Specifically, we reviewed the configuration and pricing
of Amazon’s CodeBuild [55], Microsoft’s Azure DevOps
Pipelines [56], Google Cloud Build [57], GitHub Actions [58],
GitLab CI/CD [59], BitBucket Pipelines [60], CircleCI [61],
TravisCI [62] and TeamCity [63]. Builds are executed by
CI runners, which may be provided by the cloud service
(“cloud builders”), or managed by developers using their own
(“self-hosted builders”). Some services provided only a single
configuration of cloud builder: Azure DevOps and GitHub
Actions both provide runners with 2 CPUs and 7GiB of
RAM [56], [58] (at time of writing, GitHub has a beta-only
feature to support larger cloud runners). BitBucket provides
an unspecified CPU resource, but allows memory to be scaled
between 4 and 32 GiB [60]. GitLab and Google Cloud Build
allow developers to select as little as 1 CPU with 4GiB
of RAM [57], [59], while Amazon CodeBuild, GitLab CI,
TravisCI and TeamCity start at 2 CPUs with 4GiB of RAM,
with a maximum configuration (on Amazon CodeBuild) of 72
CPUs and 144GiB of RAM [55], [59], [62], [63].

1) Potential cost savings: Our dataset is largely skewed to
projects with relatively fast-running test suites (as shown in
Table IV, the median test suite execution time is 52 seconds),
and hence, it is not possible to draw strong conclusions
regarding the potential cost savings, as the cost of running
these test suites is already quite small. As shown in Figure 8,
the median savings that we calculated was only $0.10 per
month, with a maximum of just $0.48. However, we evaluate
the potential for cost savings in these projects to provide
motivation for researchers and practitioners to examine more
significant cost savings on other projects. Our finding that
some projects can reliably build with only 0.5 CPU and 2GiB
of RAM indicates that some developers may be able to save
money by using lower-end CI runners than are available using
the “cloud runner” model. Each of these CI services also
supports a “self-hosted” runner model, where builds take place
on compute resources that are managed by the developers
(e.g., a dedicated “builder” machine, or an auto-scaling cluster
of builders). For example: developers could deploy an auto-
scaling cluster of builders with 0.5CPU/2GiB RAM on AWS
for $0.008739/hour, while GitHub Actions would charge about
55 times as much ($0.008/minute) for a runner with 2 cores
and 7GiB of RAM. Furthermore, each of these services
support only a limited number of resource configurations,
forcing specific combinations of CPU and memory (e.g.,
on CircleCI, a configuration 1 CPU with 4GiB of RAM is
not available, developers must pay for 2 CPUs to receive
4GiB of RAM). Based on the mismatch between the resource
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Figure 7: Cost savings rates per-project, simulating a change
from a 2 CPU/8GB RAM configuration to the cheapest con-
figuration that also minimized the number of flaky tests. We
observe a savings in 44 projects. We noted that a greater re-
source configuration was needed to minimize flakiness in four
projects, and that the baseline 2 CPU/8GB RAM configuration
was optimal for four projects.

requirements of projects and the configurations provided by
cloud CI services, we speculate that significant cost savings
may be achievable for some developers. Using “self-hosted”
runners that auto-scale on containers [64] that match the actual
resources required by a build (rather than over-provisioning)
can have significant cost savings. Intuitively, the magnitude
of the cost savings will be proportional to how long it takes
to run the test suite: reducing the cost of a 5-hour test suite
will have greater absolute cost savings than reducing the cost
of a 52-second test suite. Similarly, the magnitude of the cost
savings will vary with how frequently the test suite is executed.

The actual cost savings per-project will vary based on 1)
the proportional reduction in resource costs per-hour, 2) the
duration of each test suite and 3) the frequency with which
each test suite is executed. We first explore the reduction in
resource costs per-test suite execution, as this is the dependent
variable that we study directly. We calculate the expected
cost of running each test suite once under each configuration,
and report the proportional savings between the “cheapest
most reliable” configuration and the default 2-CPU 8GB RAM
configuration. Figure 7 shows a histogram of cost savings per-
project in our dataset. Of the 52 projects, we observed a cost
savings in 44, no change in four, and an increase in costs in
four projects (for which the 2 CPU configuration was not the
most reliable).

Given the relatively short duration of each of the studied test
suites (min=2 seconds, median=52 seconds,max=14 minutes),
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Figure 8: Expected monthly cost savings in USD per-project,
simulating a change from a 2 CPU/8GB RAM configuration
to the cheapest configuration that also minimized the number
of flaky tests. As the test suites for many projects were quite
short (median time = 52 seconds, Table IV shows execution
times) and number of revisions per-month is low (median=29),
the absolute cost savings are negligible.

the absolute cost savings per-project are low. We calculate
the expected monthly savings under the assumption that a CI
build is executed exactly once per-commit. To find the average
monthly savings, we compute the average number of commits
per month, and multiply that times the expected cost per-test
suite execution at each resource level. Figure 8 shows that
the expected monthly savings per-project is at most $0.48.
While the absolute savings may not be meaningful on these
projects, we speculate that projects with longer-running test
suites that receive more frequent commits will see greater
absolute savings, as indicated by the relative savings shown in
Figure 7.

We empirically demonstrate that reducing the number of
CPUs available for running tests (particularly below 1 full
CPU) has a significant effect on the test suite execution time.
Our analysis provides insight into the relationship between CI
resources, flakiness, and cost to help developers reason about
these trade-offs in their own context.

2) Efficient Resource Utilization: A cost-savings may not
be recognizable in contexts where CI builds are run on pre-
allocated, dedicated resources. In these cases, understanding
RAFT can help developers increase the utilization of those
build resources while avoiding flakiness. For example, if it
is determined that a frequently executed test suite could
run with 2 CPU cores instead of 4, then the throughput of
the CI pipeline can effectively be doubled by reducing the
resources provided to each run. In order to realize a net gain
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in test suite throughput, it is also important to ensure that
a reduction in resources does not increase the duration of
each test suite execution more so than the benefit provided
by added parallelism. Based on our analysis of slowdowns
resulting from resource restrictions (shown in Table IV), we
note that with the exception of projects with very fast-running
test suites (e.g. under 60 seconds), the slowdown incurred by
the resource reduction is often less than the potential gain in
throughput from parallel runs.

3) Determining the ideal configuration: With the goal of
exhaustively finding the most cost-effective resource config-
uration, developers should consider the kinds of operations
that tests perform. While it might be tempting to assume that,
for example, all database-related projects will be dependent
on disk I/O more than CPU time (as database systems are
typically I/O-bound), our qualitative analysis of RAFT sug-
gests that configurations and resources are more related to the
scope and features of tests rather than the scope of the overall
project. A test suite validates concurrent or asynchronous
behavior of a system and relies on timing is likely to be CPU-
dependent, regardless of what the system under test does. Our
quantitative analysis of the resources that affect flaky tests
(RQ1) suggests that if developers only have time or interest
in tuning a single resource to detect or avoid flakiness, they
should tune CPU availability. We empirically demonstrate the
importance of tuning these reduced resource configurations in
order to mitigate the impact of flaky tests.

E. Threats to validity

1) Construct validity: There are two central constructs to
our study, the flakiness of tests and resource-dependency.

Test flakiness: For classifying a test as flaky, we rely on
the observation of different test outcomes across repeated
executions. These executions may be affected by uncontrolled
factors and, hence, we may erroneously classify tests as flaky.
More precisely, there may exist an execution environment
under which the tests do not non-deterministically pass and
fail. However, the manifestation of this behavior demonstrates
that the investigated tests can be flaky in some execution
environment. This interpretation of flakiness follows common
practice in existing work.

Resource dependency: In our work, we determine resource
dependency by controlling resource access via Linux control
groups in a uniform manner, i.e., resource accesses are affected
throughout test execution. This access control closely resem-
bles execution on a resource-constrained machine. It does not
resemble resource constraints resulting from dynamic load on
shared resources well, as they are proposed in Terragni et
al.’s work [29]. However, the extreme resource restrictions
we experimented with for Phase I of our work resemble
extreme dynamic loads and lead to very sensitive detection.
We consider that part of our experiments to be a desirable
property for a detector of rare events like flaky test failures. For
Phase II, the uniform resource restriction leads to potentially
optimistic results if control for additional load on the test setup
cannot be controlled for, which is an important restriction that
users of our results should be aware of.

2) Internal validity: The conclusions we draw are based
on 300 re-executions of tests under each configuration. Other
work has shown that flaky tests can fail much more infre-
quently than once in 300 runs [31] and our results do not
systematically address such rare cases. The focus of our work
lies on flaky tests that fail frequently enough to significantly
disrupt developer activity.

To classify tests as RAFTs, we rely on a �2 test of inde-
pendence between failure rates under normal operation and
resource constraints. As we consider different configurations
for analyzing the effect of resource constraints, we conduct
several such tests against the same baseline failure rate, which
may lead to multiple comparison problems. We account for
these by adjusting the obtained p-values using the Benjamini-
Hochberg procedure [65].

3) External validity: Our results are restricted to the studied
projects and may not be generalized to other projects. One
particular concern regarding generalizability centers on how
long each test suite takes to run. As noted throughout this
article, the absolute cost savings that developers might witness
by optimizing resource utilization is bounded by how long the
test suite typically takes to run. It would indeed be challenging
to witness significant absolute cost savings for most of the
projects that we examined in our dataset, as the total cost of
running the test suite is quite low to begin with (the median
test execution time is just 52 seconds). We assume that the
cost of running a test suite is proportional to both the cost-
per-second of a computing resource and the duration of a test
suite. Furthermore, we assume that it is possible to vary the
resources that are provided to a particular test suite — some
execution environments might simply provide a fixed set of
resources to all test suites.

We expect that the main conclusions of this paper (that
RAFTs exist, and that failure rates of RAFTs can be influenced
by adjusting resource constraints) will hold. However, it would
be difficult to extrapolate from our study to determine pre-
cisely how prevalent RAFTs are in software overall or which
resource configurations are the “best” overall for reducing or
increasing those failure rates. Even from our study of only 52
open-source projects, we can see that the observed prevalence
of flaky tests and their sensitivity to resource restrictions differ.
We, hence, recommend reassessing RAFTs for other projects
using the methodology outlined in this work.

VI. CONCLUSIONS

Using rigorous statistical methods, we have empirically
demonstrated the link between test flakiness and the re-
sources available for running tests. Our study of 52 Java,
JavaScript, and Python open-source projects revealed that
resource-affected flaky tests (RAFTs) may be more prevalent
in some projects than others, likely tied to the kinds of be-
haviors that each projects’ test suite examines. By controlling
the quantity of CPU cores and RAM available to a test
suite while it runs, developers can reduce the likelihood of
observing flaky failures, or if desired, increase it. When we
reached out to the developers of 14 projects regarding the
minimum machine specifications their projects’ should run
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in to avoid RAFTs, developers of six projects responded,
while the remaining eight are pending with no response. Of
the six that responded, developers of four projects improved
their project based on our suggestions, while the remaining
two indicated that they prefer actual fixes over specification
clarifications. Although the test suites that we studied were
relatively fast running (median=52 seconds), we examined the
potential for cost savings, hypothesizing that a similar relative
cost savings would apply to other projects where the absolute
savings could be more significant. Future research in RAFTs
should examine their prevalence and impact on industrial
projects. Other work in detecting flaky tests will benefit from
running tests in reduced resource configurations, which may be
cheaper to run and reveal more flaky failures. Future research
on RAFTs might consider examining (1) the different failures
that occur under different resource configurations for a given
test, (2) the impact of other environmental factors on flaky-
test failures, (3) the idea of ignoring test runs when there
are insufficient resources to reliably run tests, and (4) how
regression testing techniques, such as test parallelization, can
leverage RAFT information to allocate machines for testing.
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