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“Continuous Integration” (CI) is now a standard software engineering practice, automating the execution
of large test suites in the cloud. By leveraging on-demand computing utilities, CI can execute hundreds of
tests in parallel, transforming what might have once been a three-day test suite into a one-hour test suite.
Whereas these test suites (including complex integration and end-to-end tests) may have previously been
run on a weekly or monthly basis, they now are run as frequently as on every single change. Engineers ben-
efit from faster feedback, identifying bugs and performance regressions sooner and optimizing productivity,
reducing development costs overall. But, CI is also a relatively new process, and it brings many challenges.

I design novel approaches to address the problems that open-source developers face when building
software with CI, and validate those solutions using these open-source projects. I release my tools and
datasets under open-source licenses and continue to maintain them. My dynamic taint tracking system
for Java, PHOSPHOR [1] has been directly used and extended by at least six external research groups in
nine publications [18]-[26]. My flaky test dataset, FLAKEFLAGGER [2] has been adopted by at least three
external research groups to support follow-up research [27]-[29]. I have also integrated my findings into
popular open-source software used for testing including Apache Maven [15], [16] and Pitest [17]. My work
is done in collaboration with colleagues and students who are identified on my C.V.
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One major problem faced by developers who adopt CI arises from tests that can seemingly fail entirely
unexpectedly and often randomly, so called “flaky tests.” Flaky tests undermine efficiency with CI, because
developers cannot easily determine when a test failure is due to their recent changes or due to flakiness.
Microsoft has reported 5% of test failures in Windows and Dynamics are caused by flaky tests [30], and
Google has reported that flaky tests accounted for 73K of the 1.6M (4.56%) daily test failures in the Google
TAP system for regression testing [31]. There are many underlying causes of non-determinism in tests such
as shared files, state on an external server, or device configuration — not to mention non-determinism from
thread scheduling and asynchronous events. Prior to CI, tests were run sufficiently infrequently that manu-
ally examining infrequent flaky failures was tolerable. However, with CI, a single test might automatically
be run hundreds of times per day, making an otherwise unlikely nuisance a common complaint. Flaky tests
are unavoidable, and developers need new tools and techniques for detecting and mitigating that flakiness.

Test order dependencies are one cause of flaky tests, and occur when one test’s execution can influence
the behavior of another (to inadvertently fail). Test order dependencies are a nuisance to developers who
want to run only a subset of their tests (as in the context of existing work in test selection or test minimiza-
tion) or want to re-order tests (as in the context of existing work in test prioritization). My contributions
in the space of test order dependencies include approaches to very efficiently isolate and remove test-order
dependencies [3], as well as approaches to precisely detect which tests depend on each other to improve
test reordering approaches [4], [S]. Most recently in this line of work, my analysis of state-of-the-practice
approaches to isolate Java test cases [6], led to a contribution to the popular open-source platform Maven
that reduced the time needed to clean up from each test by 20x [15].

When a test failure occurs in CI, one popular strategy to determine if the failure was due to flakiness
or due to a recently introduced bug is to re-run the test. If a test first fails, then is re-executed (without any
other changes) and passes, then it is quite likely that the failure is due to flakiness. If the test repeatedly
fails when re-executed, then it may be more likely that the failure is due to a defect, and developers should
attempt to debug it. However: rerunning tests can be time consuming, and rerunning all failing tests is not
feasible for large software companies running millions of tests per-day. My first effort towards automati-



cally determining if a test failure is flaky, DeFlaker, uses extremely lightweight program instrumentation
to, in most cases, determine if a failure is due to flakiness or not [7]. A key design constraint in this system
is that the instrumentation must be sufficiently lightweight to avoid any performance impact during test
execution: otherwise it would be faster to simply rerun failing tests. I have also studied how to integrate
flaky failure detection approaches into software analyses that rely on testing, like mutation analysis [8]. My
ongoing research in determining whether a test failure is due to flakiness or not aims to make this prediction
without requiring any program instrumentation, relying instead only on log files.

Given that flaky tests are a relatively new phenomena (an FSE 2014 article is generally regarded as the
first academic literature on the topic [31]), there are also many foundational questions unanswered. For
example, to develop effective new techniques to help prevent flakiness, it would help to understand: “What
kinds of code changes cause tests to become flaky?” and: “Are flaky tests flaky starting from when they
are first written, or do they become flaky later on in development?” To answer these questions, I created
“software archaeology” experiments, building software to automatically examine thousands of revisions of
dozens of open-source software projects, repeatedly executing each test suite to identify and profile flaky
tests [9]. Prior work has built datasets of flaky tests by re-running test suites dozens or hundreds of times in
order to find tests that can both pass and fail for the same code under test. To provide a richer dataset that
incorporates flaky tests that fail less frequently than 1/100 runs, I extended my experimental methodology
to re-run test suites 10,000 times [2]. I found that fewer than half of the flaky tests that were detected
in the experiment were detected after just 100 re-runs, underscoring just how difficult it is to study this
phenomena. Using this dataset, we proposed a set of features that could be used as input to a classifier to
predict which tests are likely to be flaky. In just the past few years, this research area has grown, with new
works building on my dataset [27]-[29]. My ongoing research studies the causes of these flaky test failures,
allowing us to create new approaches to help developers understand and repair them faster.
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Continuous Integration is said to be a “force multiplier” for developers’ time by using (relatively) cheap
computing resources to execute large test suites more frequently, providing developers with faster feedback.
However: Simply employing CI does not solve testing problems if developers’ test suites are not sufficiently
thorough, and manually enhancing these test suites is time consuming and challenging. For example: code
injection vulnerabilities have become increasingly common and are ranked as #1 on OWASP’s most recent
list of critical web app vulnerabilities, and were used in the high-profile 2021 Log4J vulnerability and the
2017 Equifax breach. In order to detect these vulnerabilities before releasing their software, developers
need techniques to enhance their existing test suites to generate more inputs and detect when those inputs
violate correctness or safety properties of their software.

As a first step to detect code injection vulnerabilities in Java code, I created RIVULET [10]. RIVULET
is an approach that uses existing developer test cases along with an analysis called dyrnamic taint tracking
(as implemented by my tool, Phosphor [1]) in order to detect information flows vulnerable to an attack.
When a flow is witnessed that could be vulnerable, RIVULET derives a follow-up input that can confirm
the presence of a vulnerability. When applied to the version of Apache Struts exploited in the 2017 Equifax
attack, RIVULET quickly identifies the vulnerability (with no false positives). I compared RIVULET to
the state-of-the-art static vulnerability detector Julia on benchmarks, finding that RIVULET outperformed
it in both false positives and false negatives. RIVULET also detected previously unknown vulnerabilities in
Jenkins and iTrust. However, a significant limitation of RIVULET is that it requires developers to provide
automated tests for their web application, which reveal these vulnerable data-flows.

In order to improve the reach of existing test cases, we are turning to fuzz testing. Fuzz testing is an
automated testing technique that generates inputs with the goal of revealing otherwise untested behaviors.
An emerging approach for generating inputs for Java applications relies on property tests in the style of
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QuickCheck [32]. With property testing, developers write generators that create domain-specific inputs for
their program, and specify properties that are expected to hold over all inputs created by those generators.
Then, the property testing framework invokes the generator with random inputs which in turn, generate new
inputs to the program under test. Leveraging insights from coverage-guided fuzzing, this random generation
can be biased to evolve a corpus of inputs that reveal more interesting behavior than the random approach.
CONFETTI, my recently published work in input generation examines how to most effectively combine
dynamic analysis (e.g. concolic execution) with generators in fuzzing. CONFETTI achieved better branch
coverage than the state-of-the-art fuzzer and revealed 15 previously unknown bugs in the open-source
projects BCEL (Apache Foundation) and Closure Compiler (Google). We are now studying the feasibility
of using CONFETTI with web apps, combining it with RIVULET to identify user-controlled inputs that
flow to vulnerable functions and generate exploits that demonstrate the presence of a vulnerability.

Fuzzers are extremely complex systems to implement, and what might seem to be a simple engineering
decision could have a tremendous impact in the overall performance of the system. As my students and
I continue to build new fuzzers, we are increasingly focused on the rigorous evaluation of these design
decisions. Our ongoing work in fuzzing includes not only guided fuzzing techniques to detect code injection
vulnerabilities, but also foundational empirical evaluations of unchallenged assumptions.

Automating Reproducibility for Software Experiments. FSE 2022, ICSE NIER 2023
In preparation: NSF Infrastructure Proposal ‘“Enabling Continuous Large Scale Software Engineering Experimentation”
with CMU PIs Christopher Timperley, Michael Hilton and Lauren HercKis (projected $2m total)

The past twenty years of software testing and analysis research has seen a tremendous growth, fueled by
the availability of increasingly rich open-source software datasets. These datasets consist of code and as-
sociated artifacts like version history, bug information, test suites, and build scripts to dynamically exercise
them. These open-source artifacts allow researchers to study (at a large scale) how real bugs are introduced,
detected, and repaired, enabling the growth of new and impactful research areas, including automated test
generation, automated program repair, fault localization and regression testing. Unfortunately, this increase
in experimental datasets has created a tremendous problem for designing, implementing, executing, and
reproducing experiments on these datasets, which might require decades of CPU time. Designing and par-
allelizing large experiments requires specialized knowledge of distributed systems that researchers often
lack, often resulting in scripts that are hard to share and reuse. This problem affects software engineering,
particularly in the areas of automated program repair, fuzzing, and testing. However, similar challenges
plague researchers in many other fields such as the computational sciences.

My colleagues and I have studied the artifact evaluation process in Software Engineering in order
to better characterize challenges designing and implementing these large-scale evaluations [11]. Artifact
evaluation processes have focused on how to create an evaluation of artifacts for quality attributes like
portability across computing resources, reproducibility of evaluation results and reusability of research
tools. However: Portability, reproducibility and reusability are all quality attributes, and, as with most other
quality attributes in software engineering, are achieved with the greatest ease when they are considered at
each step of the software development lifecycle — not at the end.

Using the lens of software testing, these large-scale experiments can be thought of as performance
tests, not unlike those used by large software companies like Facebook to validate their systems. CI could
be an excellent solution to these challenges: CI workflows can be adapted and reused in new contexts,
and they can be executed on different computing infrastructure. However, building and deploying new
CI infrastructure for a project is a significant undertaking — professional software companies often have
entire teams dedicated to this role. My vision is to build an open-source ecosystem of reusable components
to enable the efficient reuse of experiment scripts. At the same time, this infrastructure will catalyze new
research into how to best apply CI to large-scale systems. My reproducibility project and its goals are
outlined in a recent ICSE “new ideas” article [12].
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Open Source Dependency Management. ICSE 2023, MSR 2023

Modern software development relies inextricably on open source package repositories on a massive
scale. For example, the NPM repository contains over two million packages and serves tens of billions of
downloads weekly, and practically every JavaScript application uses the NPM package manager to install
packages from the NPM repository. The core of a package manager is its dependency solver, which tries to
quickly find the version to use for each dependency (including transitive dependencies) that a package re-
quires, subject to any and all version constraints. Developers may choose to use the “semantic versioning”
scheme, where versions are numbered in the form ma jor.minor.bug, where major denotes break-
ing API changes, minor denotes non-breaking changes that add new functionality, and bug denotes a
backwards-compatible fix. Flexible version constraints allow developers of downstream (i.e., dependent)
packages to specify which types of updates they are willing to automatically accept.

Unfortunately, NPM uses a greedy algorithm that can duplicate dependencies, fail to include the most
recent versions of dependencies, and can even introduce new vulnerabilities while trying to avoid others.
Ideally, a developer could specify policies such as “dependencies must not have any critical vulnerabili-
ties,” “packages should not be duplicated,” and combine these with the basic objective of “select the latest
package versions that satisfy all constraints.” To address this gap, we created MAXNPM: a complete,
drop-in replacement for NPM, which empowers developers to combine multiple objectives. We evaluated
MAXNPM on a large dataset of widely-used packages from the NPM repository, finding that MAXNPM
outperforms NPM: choosing newer dependencies for 14% of packages, shrinking the footprint of 21% of
packages, and reducing the number or severity of vulnerabilities of 33% of packages [13].

To guide our (and others’) future research in dependency management and supply chain security, we
conducted a large-scale empirical study of how developers use semantic versioning and the flow of up-
dates through the entire NPM ecosystem [14]. We built an infrastructure to download every version of
every package on the NPM, creating a dataset that is continuously updated as new packages are released.
We found that most updates to libraries (81%) are released as “bug” updates, and that most dependency
constraints (84%) accept both bug and minor updates. Examining the factors that might delay a package
from receiving an update (including security patches), we found that transitive dependencies could pose
particular problematic cases. Specifically: if a project A depends on B which depends on C, if B specifies
a constraint on C', then A may be unable to receive an update to C' until B updates its constraint. Future
research might examine key choke-points in the flow of updates in the dependency graph.

Our ongoing research in this project is examining techniques to detect breaking changes and malware in
open-source dependencies. In order to detect breaking changes when an update for package P is introduced,
we are finding all downstream packages D that depend on P and running the test suite for each downstream
package D against the new version of P. This testing-based approach will help developers to identify that
a change will (or will not) break downstream clients. Beyond breaking functionality, some updates might
introduce malware. As a high-profile example: in 2018 an attacker compromised the NPM account of a
maintainer of a popular package (“ESLint”) and published malicious updates that, upon being installed,
exfiltrated sensitive access tokens!. Automated detection of malicious updates is a crucial problem in
today’s dependency-heavy environment. Unfortunately, there are no publicly-available datasets of malware
published on NPM, making it challenging for researchers to study approaches to automatically detect and
filter out malicious updates. When NPM determines that a package contains malware, that package’s
contents are removed from NPM and its metadata is annotated with a flag indicating that it was removed due
to malware. Our mirror of NPM, however, does not delete the malware, allowing us to build a large dataset
that contains every piece of published malware detected by the NPM team. We are analyzing this dataset
and designing new tools to efficiently detect these malware, integrating these efforts with our breaking
change detectors.

"https://eslint.org/blog/2018/07/postmortem-for- malicious-package-publishes/
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