Handling HTTP
Requests

SWE 432, Fall 2016
Design and Implementation of Software for the Web

Today

 Handling HTTP requests
e REST
 What is it?
 Why use it”
 Handling HTTP Requests with Express

For further reading:

REST: https://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT. pdf
Express: https://express|s.com/

LaToza/Bell GMU SWE 432 Fall 2016

https://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
https://expressjs.com/

Handling HTTP Reg

Web “Front End”

JavaScript

Server “Back .

Data sto
Some Our own

LaToza/Bell GMU SWE 432 Fall 2016

uests

Presentation

Some logic

rage

ner logic

Handling HTTP Requests

Web “Front End”

LaToza/Bell

Server “Back End”

HTTP Request

HTTP GET http://api.wunderground.com/api/
3bee87321900cfl4/conditions/q/VA/Fairfax.json

A r————————————————————————
HTTP Response

HTTP/1.1 200 OK

Server: Apache/2.2.15 (Cent0S)
Access—-Control-Allow-0rigin: =
Access—Control-Allow-Credentials: true
X-CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max—-age=0, no-cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589

Connection: keep—alive

{
"response'": {
"version":"0.1",
"termsofService": 'thtitpwi/asawawenderground. com/weather/api/d/terms.html",

4

LaToza/Bell

Key Design Questions

APl: What requests should server support?
dentifiers: How are requests described?
—rrors: What happens when a request fails®?

Heterogeneity: What happens when ditferent clients
make different requests”?

Caching: How can server requests be reduced by
caching responses”

Versioning: What happens when the supported
requests change”

GMU SWE 432 Fall 2016

REST: REpresentational State Transfer

o Defined by Roy Fielding in his 2000 Ph.D. dissertation

 Used by Fielding to design HTTP 1.1 that generalizes
JRLs to URlIs

e http://www.ics.uci.edu/~fielding/pubs/dissertation/

fielding_dissertation.pdf

 “Throughout the HT TP standardization process, | was
called on to defend the design choices of the Web. That is
an extremely difficult thing to do... | had comments from
well over 500 developers, many of whom were
distinguished engineers with decades of experience. That
process honed my model down to a core set of principles,
properties, and constraints that are now called REST.”

* |nterfaces that follow REST principles are called RESTul

LaToza/Bell GMU SWE 432 Fall 2016

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Properties of REST

* Performance

o Scalability

o Simplicity of a Unitorm Interface

* Modifiability of components (even at runtime)

e Visibility of communication between components
Oy service agents

* Portability of components by moving program code
with data

. Reliability

LaToza/Bell GMU SWE 432 Fall 2016

LaToza/Bell

Principles of REST

Client server: separation of concerns

Stateless: each client request contains all information
necessary to service request

Cacheable: clients and intermediaries may cache
responses.

Layered system: client cannot determine if it is
connected to end server or intermediary along the
way.

Uniform interface for resources: a single uniform
interface (URIs) simplifies and decouples architecture

GMU SWE 432 Fall 2016

Uniform Interface for Resources

* Originally files on a web server
* URL refers to directory path anc

e But... URIs might be used as an id

file of a resource
entity for any entity

A person, location, place, item, tweet, emaill, detall

view, like

* Does not matter it resource Is a file, an entry in a
database, retrieved from another server, or
computed by the server on demand

* Resources offer an interface to the server describing

the resources with which clients
« Example: Firebase path

LaToza/Bell GMU SWE 432 Fall 2016

can interact

URI: Universal Resource Identifier

* Uniquely describes a resource

o https://mail.google.com/mail/u/O/#inbox/
157d5fb795159ac0

o https://www.amazon.com/gp/yourstore/home/
ref=nav_cs_ys

 http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov RESTIDontThinkltMeansWhatYouThinkltDoes.

pdft
* Which is a file, external web service request, or stored in a
database”

* |t does not matter

* As client, only matters what actions we can do with resource,
not how resource Is represented on server

LaToza/Bell GMU SWE 432 Fall 2016 10

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

Intermediaries

Web “Front End” “Origin” server

e ———————————————ll
HTTP Request

HTTP GET http://api.wunderground.com/api/
3bee87321900cfl4/conditions/q/VA/Fairfax.json

A r————————————————————————
HTTP Response

HTTP/1.1 200 OK

Server: Apache/2.2.15 (Cent0S)
Access—-Control-Allow-0rigin: =
Access—Control-Allow-Credentials: true
X-CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max—-age=0, no-cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589

Connection: keep—alive

{
"response'": {
"version":"0.1",
LaToza/Bell "termsofService":'dmitpwi/asawrawende rground. com/weather/api/d/terms.html", 11

Intermediaries

Web “Front End” Intermediary “Origin” server

—_—

HTTP Request HTTP Request

?7?7?

—

HTTP Response HTTP Response

e Client interacts with a resource identified by a URI

e But it never knows (or cares) whether it interacts with origin
server or an unknown intermediary server

* Might be randomly load balanced to one of many servers

 Might be cache, so that large file can be stored locally
* (e.g., GMU caching an OSX update)
 Might be server checking security and rejecting requests

LaToza/Bell GMU SWE 432 Fall 2016

12

LaToza/Bell

Challenges

with intermediaries

o But can all requests really be intercepted In the

same way"”?

¢ SOmMe requests
resource

might produce a change to a

 (Can't just cache a response... would not get

updated!

 SOome requests
time they execL

might create a change every
te

e Must be care!

ul retrying failed requests or

could create extra copies of resources

GMU SWE 432 Fall 2016 13

LaToza/Bell

cannot do wit
e Solution: HTT

HTTP Actions

 How do intermediaries know what they can and

P Actio

Describes what wi
GET: retrieve the current state of the resource

DELETE: C

N a request?

NS

| be done with resource

PUT: modity the state of a resource
ear a resource

POST: initialize the state of a new resource

GMU SWE 432 Fall 2016

14

HTTP Actions

e GET: safe method with no side effects

 Requests can be intercepted and replaced with cache
response

 PUT, DELETE: idempotent method that can be repeated
with same result

* Requests that fail can be retried indetinitely till they
succeed

e POST: creates new element

e Retrying a failed request might create duplicate copies
of new resource

2) The page you are trying to view contains POSTDATA. [f you resend the data, any action the form
L~ carmied out (such as a search or online purchase) will be repsated. To resend the data, chick OK
Otherwise, click Cancel.

OK [Cancel

LaToza/Bell GMU SWE 432 Fall 2016 15

LaToza/Bell

Specifying HTTP Actions w/ jQuery

* method field of $.ajax can be used to specify
method

e “GET", "PUT", "DELETE", "POST”

$.ajax({
url: “http://webservice.com/resource/235%,
method: “PUT”,

data: { “name”: “Best resource ever!” }

})s

GMU SWE 432 Fall 2016

16

Versioning

e Your web service just added a great new feature!
 You'd like to expose it in your API.

* But... there might be old clients (e.g., websites)
built using the old API.

* [These websites might be owned by someone
else and might not know about the change.

e Don’t want these clients to throw an error
whenever they access an updated API.

LaToza/Bell GMU SWE 432 Fall 2016 17

Cool URIs don’t change

* Intheory, URI could last forever, being reused as server is
rearchitected, new features are added, or even whole technology stack

IS replaced.

« “What makes a cool URI?
A cool URI is one which does not change.

What sorts of URIs change?
URIs don't change: people change them.”

e hitps://www.w3.org/Provider/Style/URI.html

e Bad:

o https://www.w3.org/Content/id/50/URI.html (What does this path
mean? What if we wanted to change it to mean something else?)

 Why might URIs change?”
 We reorganized our website to make it better.
 We used to use a cgi script and now we use node.JS.

LaToza/Bell GMU SWE 432 Fall 2016 18

https://www.w3.org/Provider/Style/URI.html

LaToza/Bell

URI Design

URIs represent a contract about what resources your server
exposes and what can be done with them

Leave out anything that might change

e Content author names, status of content, other keys that
might change

* File name extensions: response describes content type
through MIME header not extension (e.qg., .jpg, .mp3, .pdf)

e Server technology: should not reference technology
(e.g., .ctm, .jsp)

Endeavor to make all changes backwards compatible
 Add new resources and actions rather than remove old

It you must change URI structure, support old URI structure
and new URI structure

GMU SWE 432 Fall 2016

19

LaToza/Bell

Describing Responses

* What happens if something goes wrong while handling HTTP
request?

 How does client know what happened and what to try next?

« HTTP offers response status codes describing the nature of the
response

* 1Ixx Informational: Request received, continuing

e 2xx Success: Request received, understood, accepted,
processed

e 200: OK

e 3xx Redirection: Client must take additional action to complete
request

* 301: Moved Permanently
 307: Temporary Redirect

https://en.wikipedia.org/wiki/List_of HTTP_status_codes

GMU SWE 432 Fall 2016

20

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

LaToza/Bell

Describing Errors

4xx Client Error: client did not make a valid request to
server. Examples:

400
403
404
405

Bad request (e.g., malformed syntax)
—orbidden: client lacks necessary permissions
Not found

Method Not Allowed: specified HTTP action not

allowed for resource

408

Request Timeout: server timed out waiting for a

request

410
and

Gone: Resource has been intentionally removed
will not return

429 Too Many Requests

GMU SWE 432 Fall 2016 21

LaToza/Bell

Describing Errors

e 5xx Server Error: The server failed to fulfill an
apparently valid request.

* 500 Internal Server Error: generic error message
501 Not Implemented

* 503 Service Unavailable: server is currently
unavailable

GMU SWE 432 Fall 2016

22

LaToza/Bell

Handling HTTP Requests in Express

 Node.|s package for expressing rules about how to
handle HT TP requests

<« C' & htps://express/s.com

P

$ npm install express --save

Web Applications

Express is a minimal and flexible
Node.js web appl cation
framework that provides a
robust sat of features for web

and moble applications.

Home Getting started

API|s

With @ miyriad of HTTP utility
methods and middlewzrs at
your disposal, crezting a robust
APlis quick and easy.

Guide APl reference

Performance

Express provides a thin layer of
fundzmental web applicaticn
features, without obscuring
Ncde js featuras that you know
and love.

GMU SWE 432 Fall 2016

Advancad topics

Reszources

Frameworks

Many popular Trarmeworks @

Q
Lt

DésecC on Express.

23

LaToza/Bell

Hello World from Last Time

var express = require('express');

var app = express();

var port = process.env.port || 3000;

app.get('/', function (req, res) {
res.send('Hello World!');

1)

app.get('/goodbye', function (req, res) {
res.status(500);
1)

app.listen(port, function () {
console.log('Example app listening on port' + port);

})s

GMU SWE 432 Fall 2016

24

LaToza/Bell

Core concept: Routing

* The definition of end points (URIs) and how they
respond to client requests.

* app

ME

PAT

METHO

OD: al

. string

O(PATH, H

ANDLER

. get, pos

e HANDLER: call back

app.post('/’

function (reg

, put, delete, [and others]

res

res.send('Got a POST request’

GMU SWE 432 Fall 2016

Route paths

o (Can specity strings, string patterns, and regular expressions
e Canuse?, +, *, and ()
 Matches request to root route

app.get('/"', function (req, res
res.send('root’

« Matches request to /about

app.get('/about', function (req, res
res.send('about’

* Matches request to /abe and /abcde

app.get('/ab(cd)?e', function(req, res
res.send('ab(cd) e’

LaToza/Bell GMU SWE 432 Fall 2016

LaToza/Bell

Route parameters

* Named URL segments that capture values at

S

oecitied location in URL
Stored into req.params object by name

* Example

Route path /users/:userld/books/:bookld

Request URL htip.//localhost:3000/users/34/books/
8989

Resulting req.params: { "userId": "34",
"bookId": '8989" }

app.get('/users/:userld/books/:bookId', function(req, res
res.send(reqg.params

GMU SWE 432 Fall 2016

27

Request object

 Enables reading properties of HT TP request

* req.body: JSON submitted in request body
(must define body-parser to use)

 req.1ip: |IP of the address

* req.query: URL query parameters

LaToza/Bell GMU SWE 432 Fall 2016

Response object

 Enables a response to client to be generated
¢ res.send() - send string content
 res.download() - prompts for a file download
 res.json() - sends a response w/ JSON header
 res.redirect() - sends a redirect response
¢ res.sendStatus() - sends only a status message
 res.sendFile() - sends the file at the specified path

app.get('/users/:userld/books/:bookId’', function(req, res
res.json req.params.bookID }

LaToza/Bell GMU SWE 432 Fall 2016

LaToza/Bell

Error handling

* EXxpress offers a default error handler

« (Can specific error explicitly with status
e res.status(500);

GMU SWE 432 Fall 2016

30

LaToza/Bell

Demos

e https://github.com/expressjs/express/tree/master/
examples

» https://qgithub.com/tlatoza/ProgrammingStudies/
blob/master/server.|s

 Examples from last lecture updated with more
routing and params tricks

GMU SWE 432 Fall 2016

31

https://github.com/expressjs/express/tree/master/examples
https://github.com/expressjs/express/tree/master/examples
https://github.com/tlatoza/ProgrammingStudies/blob/master/server.js
https://github.com/tlatoza/ProgrammingStudies/blob/master/server.js

