
Handling HTTP
Requests

SWE 432, Fall 2016
Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• Handling HTTP requests
• REST

• What is it?
• Why use it?

• Handling HTTP Requests with Express

2

For further reading:

REST: https://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
Express: https://expressjs.com/

https://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
https://expressjs.com/

LaToza/Bell GMU SWE 432 Fall 2016

Handling HTTP Requests

3

Web “Front End”

Server “Back End”

HTML CSS JavaScript

React

Firebase Some
other API

Presentation
Some logic

Data storage
Some other logicOur own

backend

LaToza/Bell GMU SWE 432 Fall 2016

Handling HTTP Requests

4

Web “Front End” Server “Back End”

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

HTTP Response
HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",
 "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
 "features": {

LaToza/Bell GMU SWE 432 Fall 2016

Key Design Questions
• API: What requests should server support?
• Identifiers: How are requests described?
• Errors: What happens when a request fails?
• Heterogeneity: What happens when different clients

make different requests?
• Caching: How can server requests be reduced by

caching responses?
• Versioning: What happens when the supported

requests change?

5

LaToza/Bell GMU SWE 432 Fall 2016

REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation
• Used by Fielding to design HTTP 1.1 that generalizes

URLs to URIs
• http://www.ics.uci.edu/~fielding/pubs/dissertation/

fielding_dissertation.pdf
• “Throughout the HTTP standardization process, I was

called on to defend the design choices of the Web. That is
an extremely difficult thing to do… I had comments from
well over 500 developers, many of whom were
distinguished engineers with decades of experience. That
process honed my model down to a core set of principles,
properties, and constraints that are now called REST.”

• Interfaces that follow REST principles are called RESTful

6

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

LaToza/Bell GMU SWE 432 Fall 2016

Properties of REST
• Performance
• Scalability
• Simplicity of a Uniform Interface
• Modifiability of components (even at runtime)
• Visibility of communication between components

by service agents
• Portability of components by moving program code

with data
• Reliability

7

LaToza/Bell GMU SWE 432 Fall 2016

Principles of REST
• Client server: separation of concerns
• Stateless: each client request contains all information

necessary to service request
• Cacheable: clients and intermediaries may cache

responses.
• Layered system: client cannot determine if it is

connected to end server or intermediary along the
way.

• Uniform interface for resources: a single uniform
interface (URIs) simplifies and decouples architecture

8

LaToza/Bell GMU SWE 432 Fall 2016

Uniform Interface for Resources
• Originally files on a web server

• URL refers to directory path and file of a resource
• But… URIs might be used as an identity for any entity

• A person, location, place, item, tweet, email, detail
view, like

• Does not matter if resource is a file, an entry in a
database, retrieved from another server, or
computed by the server on demand

• Resources offer an interface to the server describing
the resources with which clients can interact

• Example: Firebase path

9

LaToza/Bell GMU SWE 432 Fall 2016

URI: Universal Resource Identifier

• Uniquely describes a resource
• https://mail.google.com/mail/u/0/#inbox/

157d5fb795159ac0
• https://www.amazon.com/gp/yourstore/home/

ref=nav_cs_ys
• http://gotocon.com/dl/goto-amsterdam-2014/slides/

StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.
pdf

• Which is a file, external web service request, or stored in a
database?
• It does not matter

• As client, only matters what actions we can do with resource,
not how resource is represented on server

10

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

LaToza/Bell GMU SWE 432 Fall 2016

Intermediaries

11

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",
 "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
 "features": {

LaToza/Bell GMU SWE 432 Fall 2016

Intermediaries

12

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI
• But it never knows (or cares) whether it interacts with origin

server or an unknown intermediary server
• Might be randomly load balanced to one of many servers
• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)
• Might be server checking security and rejecting requests

LaToza/Bell GMU SWE 432 Fall 2016

Challenges with intermediaries
• But can all requests really be intercepted in the

same way?
• Some requests might produce a change to a

resource
• Can’t just cache a response… would not get

updated!
• Some requests might create a change every

time they execute
• Must be careful retrying failed requests or

could create extra copies of resources

13

LaToza/Bell GMU SWE 432 Fall 2016

HTTP Actions
• How do intermediaries know what they can and

cannot do with a request?
• Solution: HTTP Actions

• Describes what will be done with resource
• GET: retrieve the current state of the resource
• PUT: modify the state of a resource
• DELETE: clear a resource
• POST: initialize the state of a new resource

14

LaToza/Bell GMU SWE 432 Fall 2016

HTTP Actions
• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache
response

• PUT, DELETE: idempotent method that can be repeated
with same result
• Requests that fail can be retried indefinitely till they

succeed
• POST: creates new element

• Retrying a failed request might create duplicate copies
of new resource

15

LaToza/Bell GMU SWE 432 Fall 2016

Specifying HTTP Actions w/ jQuery

• method field of $.ajax can be used to specify
method
• “GET”, “PUT”, “DELETE”, “POST”

$.ajax({	
			url:	“http://webservice.com/resource/235”,	
			method:	“PUT”,	
			data:	{	“name”:	“Best	resource	ever!”	}	
});

16

LaToza/Bell GMU SWE 432 Fall 2016

Versioning
• Your web service just added a great new feature!

• You’d like to expose it in your API.
• But… there might be old clients (e.g., websites)

built using the old API.
• These websites might be owned by someone

else and might not know about the change.
• Don’t want these clients to throw an error

whenever they access an updated API.

17

LaToza/Bell GMU SWE 432 Fall 2016

Cool URIs don’t change
• In theory, URI could last forever, being reused as server is

rearchitected, new features are added, or even whole technology stack
is replaced.

• “What makes a cool URI? 
A cool URI is one which does not change. 
What sorts of URIs change? 
URIs don't change: people change them.”
• https://www.w3.org/Provider/Style/URI.html
• Bad:

• https://www.w3.org/Content/id/50/URI.html (What does this path
mean? What if we wanted to change it to mean something else?)

• Why might URIs change?
• We reorganized our website to make it better.
• We used to use a cgi script and now we use node.JS.

18

https://www.w3.org/Provider/Style/URI.html

LaToza/Bell GMU SWE 432 Fall 2016

URI Design
• URIs represent a contract about what resources your server

exposes and what can be done with them
• Leave out anything that might change

• Content author names, status of content, other keys that
might change

• File name extensions: response describes content type
through MIME header not extension (e.g., .jpg, .mp3, .pdf)

• Server technology: should not reference technology
(e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible
• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure
and new URI structure

19

LaToza/Bell GMU SWE 432 Fall 2016

Describing Responses
• What happens if something goes wrong while handling HTTP

request?
• How does client know what happened and what to try next?

• HTTP offers response status codes describing the nature of the
response
• 1xx Informational: Request received, continuing
• 2xx Success: Request received, understood, accepted,

processed
• 200: OK

• 3xx Redirection: Client must take additional action to complete
request
• 301: Moved Permanently
• 307: Temporary Redirect

20

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

LaToza/Bell GMU SWE 432 Fall 2016

Describing Errors
• 4xx Client Error: client did not make a valid request to

server. Examples:
• 400 Bad request (e.g., malformed syntax)
• 403 Forbidden: client lacks necessary permissions
• 404 Not found
• 405 Method Not Allowed: specified HTTP action not

allowed for resource
• 408 Request Timeout: server timed out waiting for a

request
• 410 Gone: Resource has been intentionally removed

and will not return
• 429 Too Many Requests

21

LaToza/Bell GMU SWE 432 Fall 2016

Describing Errors
• 5xx Server Error: The server failed to fulfill an

apparently valid request.
• 500 Internal Server Error: generic error message
• 501 Not Implemented
• 503 Service Unavailable: server is currently

unavailable

22

LaToza/Bell GMU SWE 432 Fall 2016

Handling HTTP Requests in Express
• Node.js package for expressing rules about how to

handle HTTP requests

23

LaToza/Bell GMU SWE 432 Fall 2016

Hello World from Last Time

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.port	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.get('/goodbye',	function	(req,	res)	{	
		res.status(500);	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

24

LaToza/Bell GMU SWE 432 Fall 2016

Core concept: Routing
• The definition of end points (URIs) and how they

respond to client requests.
• app.METHOD(PATH, HANDLER)
• METHOD: all, get, post, put, delete, [and others]
• PATH: string
• HANDLER: call back

app.post('/',	function	(req,	res)	{	
		res.send('Got	a	POST	request');	
});

25

LaToza/Bell GMU SWE 432 Fall 2016

Route paths
• Can specify strings, string patterns, and regular expressions

• Can use ?, +, *, and ()
• Matches request to root route
app.get('/',	function	(req,	res)	{	
		res.send('root');	
});	

• Matches request to /about
app.get('/about',	function	(req,	res)	{	
		res.send('about');	
});	

• Matches request to /abe and /abcde
app.get('/ab(cd)?e',	function(req,	res)	{	
	res.send('ab(cd)?e');	
});

26

LaToza/Bell GMU SWE 432 Fall 2016

Route parameters
• Named URL segments that capture values at

specified location in URL
• Stored into req.params object by name

• Example
• Route path /users/:userId/books/:bookId
• Request URL http://localhost:3000/users/34/books/

8989
• Resulting req.params: { "userId": "34",

"bookId": "8989" }
app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.send(req.params);	
});

27

LaToza/Bell GMU SWE 432 Fall 2016

Request object
• Enables reading properties of HTTP request

• req.body: JSON submitted in request body
(must define body-parser to use)

• req.ip: IP of the address
• req.query: URL query parameters

28

LaToza/Bell GMU SWE 432 Fall 2016

Response object
• Enables a response to client to be generated

• res.send() - send string content
• res.download() - prompts for a file download
• res.json() - sends a response w/ JSON header
• res.redirect() - sends a redirect response
• res.sendStatus() - sends only a status message
• res.sendFile() - sends the file at the specified path

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.json({	“id”:	req.params.bookID	});	
});

29

LaToza/Bell GMU SWE 432 Fall 2016

Error handling
• Express offers a default error handler

• Can specific error explicitly with status
• res.status(500);

30

LaToza/Bell GMU SWE 432 Fall 2016

Demos

• https://github.com/expressjs/express/tree/master/
examples

• https://github.com/tlatoza/ProgrammingStudies/
blob/master/server.js

• Examples from last lecture updated with more
routing and params tricks

31

https://github.com/expressjs/express/tree/master/examples
https://github.com/expressjs/express/tree/master/examples
https://github.com/tlatoza/ProgrammingStudies/blob/master/server.js
https://github.com/tlatoza/ProgrammingStudies/blob/master/server.js

