
Byzantine Fault
Tolerance

CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

ZooKeeper - Consistency

!2

Client App ZKClient

Leader

Client App ZKClient

Client App ZKClient

Client App ZKClient

Follower

Follower

ZooKeeper Ensemblewrite x=11

OK

There is a time window before the
follower realizes its disconnected in

which it can have stale reads!

x=11x=11x=11

OK

read x

x=10

Disconnected

J. Bell GMU CS 475 Spring 2018

ZooKeeper - Consistency

!3

Client App ZKClient

Leader

Client App ZKClient

Client App ZKClient

Client App ZKClient

Follower

Follower

ZooKeeper Ensemblewrite x=11

OK

sync() command forces ZK to
make sure it is up-to-date

x=11x=11x=11

OK

sync
read x

Disconnectedsync
read x

J. Bell GMU CS 475 Spring 2018

ZooKeeper in Final Project

!4

Leader

Follower Follower Follower Follower

Coordination
Service

All writes go to leader

Who is the leader? Once we hit the leader, is it sure that it still is the leader?

Leader broadcasts read-invalidates to clients
Who is still alive?

Reads processed on each client
If don’t have data cached, contact leader - who is leader?

J. Bell GMU CS 475 Spring 2018

ZooKeeper in Final Project

!5

Leader

Follower Follower Follower Follower

Coordination
Service

All writes go to leader

Who is the leader? Once we hit the leader, is it sure that it still is the leader?

Leader broadcasts read-invalidates to clients
Who is still alive?

Reads processed on each client
If don’t have data cached, contact leader - who is leader?

PUT x=5

x=5

x=5

GET x

x=5

PUT x=7

Invalidate XInvalidate X

x=7

x=7

Failures can happen
anywhere, anytime!

Real Architectures

External
Cache

Web
Servers

App
Servers

Database
servers

Internet

Internal
Cache

Misc
Services

Clients

N-Tier Web
Architectures

J. Bell GMU CS 475 Spring 2018

Designing and Building Distributed Systems

To help design our algorithms and systems, we tend to
leverage abstractions and models to make assumptions

!7

St
re

ng
th

System model

Synchronous

Asynchronous

Failure Model

Crash-fail

Partitions

Byzantine

Consistency Model
Eventual

Sequential

Generally: Stronger assumptions -> worse performance
Weaker assumptions -> more complicated

J. Bell GMU CS 475 Spring 2018

Announcements
• Form a team and get started on the project!

• http://jonbell.net/gmu-cs-475-spring-2018/final-
project/

• AutoLab available soon
• Today:

• Getting started on 3-part security discussion
• Byzantine Fault Tolerance

!8

http://jonbell.net/gmu-cs-475-spring-2018/final-project/
http://jonbell.net/gmu-cs-475-spring-2018/final-project/

J. Bell GMU CS 475 Spring 2018

Is our system well behaved?

!9

Crash-fail

Partitions

Byzantine

What we’ve done so far

Today

J. Bell GMU CS 475 Spring 2018

Detecting Failures
• Our expectation so far: Fail-stop
• If a system stops working, it’s failed

• Maybe was network
• Maybe was computer
• Hard enough already to tell the difference between

temporary (partition) and persistent (node crash)
• What if a node fails but does not stop responding?
• Can we tell that it has failed?

• Probably, using voting? But - expensive?

!10

J. Bell GMU CS 475 Spring 2018

Byzantine Faults

!11

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

J. Bell GMU CS 475 Spring 2018

Byzantine Faults in Practice
• Many cases in aviation, e.g. 777 fly-by-wire control

system
• Pilot gives input to flight computer
• THREE different flight computers

• AMD, Motorola, Intel
• Each in a different physical location, connected to

different electrical circuits, built by different
manufacturers
• Different components vote on the current state of the

world and what to do next
• Tolerates all kinds of failures

!12

J. Bell GMU CS 475 Spring 2018

Byzantine Failures
• Very large set of ways in which a system might

misbehave
• Bugs (perhaps on a single node)
• Intentional malice (perhaps a single node)
• Conspiracies (multiple bad nodes)

!13

J. Bell GMU CS 475 Spring 2018

Byzantine Faults in Final Project
• Leader neglects to send invalidate to some client
• Leader gives the wrong value for a read
• Follower neglects to invalidate
• Follower pretends to be a leader
• Follower does incorrect read/write

!14

J. Bell GMU CS 475 Spring 2018

Byzantine General's Problem
• “We imagine that several divisions of the Byzantine

army are camped outside an enemy city, each
division commanded by its own general. The
generals can communicate with one another only
by messenger. After observing the enemy, they
must decide upon a common plan of action.
However, some of the generals may be traitors,
trying to prevent the loyal generals from reaching
agreement” - Lamport, Shostak, and Pease, 1980-2

!15

J. Bell GMU CS 475 Spring 2018

Byzantine Generals Problem

!16

D
on’t attack!

Attack!

Attack!

J. Bell GMU CS 475 Spring 2018

Byzantine Fault Tolerance
• We tend to think of byzantine faults in an adversarial model

• A node gets compromised, an attacker tries to break your
protocol

• Adversary could:
• Control all faulty nodes
• Be aware of any cryptography keys
• Read all network messages
• Force messages to become delayed

• Also could handle bugs
• Assuming uncorrelated (independent) failures

• How do we detect byzantine faults?

!17

J. Bell GMU CS 475 Spring 2018

Byzantine Generals: Reduction
• Easier to reason about a single commander (general)

sending his order to the others
• “Byzantine Commander Problem”:

• 1 commanding general must send his order to n-1
lieutenants

• All loyal lieutenants obey the same order
• If the commanding general is loyal, every loyal

lieutenant obeys the order he sends
• Consider metaphor:

• General -> node proposing a new value
• Lieutenants -> participants in agreement process

!18

J. Bell GMU CS 475 Spring 2018

Byzantine Strawman 1
• N servers
• Client sends request to all
• Waits for all n to reply, only proceeds if all n agree

!19

J. Bell GMU CS 475 Spring 2018

Byzantine Strawman 1
• Problem: a single evil node can halt the system

!20

J. Bell GMU CS 475 Spring 2018

Byzantine Strawman 2
• 2f+1 servers, assume no more than f are faulty
• If client gets f+1 matching replies, then OK

!21

J. Bell GMU CS 475 Spring 2018

Byzantine Strawman 2
• Problem: can't wait for the last f replies (same as

previous strawman)
• But what if the first f replies were from faulty

replicas?

!22

J. Bell GMU CS 475 Spring 2018

Byzantine Strawman 3
• 3f+1 servers, of which at most f are faulty
• Clients wait for 2f+1 replies

• Take the majority vote from those 2f+1
• If f are still faulty, then we still have f+1 not-faulty!

!23

J. Bell GMU CS 475 Spring 2018

Byzantine Fault Tolerance ("Oral messages")

• Assumes conditions similar to if discussion were
happening orally, by pairwise conversations
between commanders and lieutenants

• Assumptions:
• Every message is delivered exactly as it was

sent
• Receiver knows who the sender is for every

message
• Absence of a message can be detected (and

there is some default assumed value)

!24

J. Bell GMU CS 475 Spring 2018

Oral BFT Solution (No Traitors)
• Each commander sends the proposed value to

every lieutenant
• Each lieutenant accepts that value
• (But that isn’t really fault tolerant…)

!25

J. Bell GMU CS 475 Spring 2018

Oral BFT Solution (m traitors)
• Our solution: OM(m,S) tolerates m traitors in a set

of S participants
• Commander i sends his proposed value vi to every

lieutenant j
• Each lieutenant j receives some value vj from the

commander (note they might receive different
values if commander is traitor!)

• Each lieutenant has a conversation with each other
lieutenant to confirm the commander’s order,
conducting OM(m-1,S-{i}), recursively

!26

J. Bell GMU CS 475 Spring 2018

Oral BFT Solution (m traitors)
• Example: assume commander i is loyal
• Each lieutenant receives the same value from the commander
• Loyal ones could just accept that value, does not matter what

traitors do (and hence, we are tolerant as long as a majority of
commanders are loyal)

• BUT, maybe commander is not loyal
• Hence, assume commander is a traitor, and conduct a ballot

to reach a consensus on what message the commander sent
• But how do you know that the other LIEUTENANTS are loyal?

They might lie about what they heard from the commander
• Hence, recurse

!27

J. Bell GMU CS 475 Spring 2018

Oral BFT Example (n=4, m=1)

!28

Commander

Lieutenant 1 Lieutenant 2 Lieutenant 3

x
y z

zx

J. Bell GMU CS 475 Spring 2018

Oral BFT
• At best, can tolerate m failures from 3m+1 participants

• Ensures you always have a majority of valid participants
• If the loyal lieutenants decide the general is a traitor, they

need to have some predefined behavior
• This is really expensive (communication)

• To tolerate m traitors among n participants, or OM(m),
each of n-1 participants will invoke this OM(m-1) times

• OM(m-1) will cause n-2 participants to call OM(m-2)
• Overall number of messages: O(nm)
• Example: tolerate 3 failures from 10 participants: 1,000

messages

!29

J. Bell GMU CS 475 Spring 2018

Signed BFT
• In the oral algorithm, a traitor can lie about the commander’s orders
• Signed BFT adds an additional assumption:

• Messages are signed; a loyal participant's signature can not be
forged; alteration of the messages contents can be detected

• Anyone can verify a signature
• Algorithm SM(m):
• General signs and sends its value to each lieutenant
• For every lieutenant i:

• If the order they receive has m distinct signature on it, then you
are done

• If not, then sign the order, forward to participants who have not
signed it

!30

J. Bell GMU CS 475 Spring 2018

Signed BFT
• Requires 2m+1 nodes to tolerate m byzantine faults
• Less messages than the oral approach
• Tricky to implement a system that holds all of the

assumptions we set out:
• Every message sent is delivered correctly
• Receiver knows who the sender is
• Absence of a message can be detected
• Loyal general’s signature cannot be forged; any

alteration of a signed message can be detected;
anyone can verify authenticity of a general’s signature

!31

J. Bell GMU CS 475 Spring 2018

BFT Disclaimers
• Are byzantine failures truly random? (do they occur

independently)
• Does not protect against all kinds of attacks

against your system
• E.g. steal sensitive data

• If anybody can join the network, then an adversary
could overwhelm the voting process

• Usually considered as one component of a
broader threat model

!32

J. Bell GMU CS 475 Spring 2018

Threat Models
• What is being defended?

• What resources are important to defend?
• What malicious actors exist and what attacks

might they employ?
• Who do we trust?

• What entities or parts of system can be
considered secure and trusted

• Have to trust something!

!33

J. Bell GMU CS 475 Spring 2018

Bitcoin
• Goal: Build a system for electronic cash, but without

having any trust (of government, money holders, money
changers)

• What’s good (or not) about cash?
• Portable
• Can not spend twice
• Can not repudiate after payment
• No need for trusted 3rd party to do a single transaction
• Doesn’t work online
• Easy to steal

!34

J. Bell GMU CS 475 Spring 2018

What about credit cards (paypal, venmo,
square)?

• Works online
• Somewhat hard to steal (need some knowledge)
• Can repudiate
• Requires trusted 3rd party
• Tracks all of your purchases

!35

J. Bell GMU CS 475 Spring 2018

Bitcoin
• Works online
• Uses crypto-coins
• No central authority for issuing coins or tracking

ownership of coins

!36

J. Bell GMU CS 475 Spring 2018

Cryptocurrencies
• Cryptocurrencies are based on public-key encryption
• Encryption review: Using public key, can send

message that can only be read by holder of private
key

!37

Public Key Private Key

Plain text
Message

Encrypted
Message

Plain text
Message

J. Bell GMU CS 475 Spring 2018

Cryptocurrencies
• Cryptocurrencies are based on public-key encryption
• Encryption review: Using private key, can send messages

that can be verified came from us (using our public key)

!38

Public KeyPrivate Key

Plain text
Message

Signed
Message

Plain text
Message

J. Bell GMU CS 475 Spring 2018

Bitcoin
• If I own a bitcoin, then I have the private key that

signed it; anyone can verify that I own it
• Transfer some bitcoin (say, #10) from A->B

• A creates a record that has B's public key, plus
the serial # of the coin that A is transferring

• A signs it with their private key

!39

J. Bell GMU CS 475 Spring 2018

Bitcoin: Example

!40

Bitcoin 10

B’s pub key
A’s

signature

Bitcoin Transaction 1
Transfers coin 10 from A to B

Bitcoin Transaction 2
Transfers coin 10 from B to C

Bitcoin 10

C’s pub key
B’s

signature

J. Bell GMU CS 475 Spring 2018

Bitcoin
• Problem:

• Where do the serial numbers come from?
• How do we know that a coin is only spent once?

• Easy answer - use a bank/central party:
• Bank issues serial numbers
• Bank keeps track of who owns each coin; doesn't

let you spend the same coin more than once
• Problem:

• Want decentralized.

!41

J. Bell GMU CS 475 Spring 2018

Blockchains
• Idea: make everyone that participates keep track of all records as

a common log
• Each participant stores a replica of the log, broadcasts

transactions to peers
• How do we keep the peers up to date though?

• Paxos?
• Requires everyone is trusted to not corrupt the log

• Byzantine fault tolerant paxos?
• Requires 2/3 trusted to not corrupt the log
• How do you move forward even if you find corruption?
• How easy is it to overwhelm the network with malicious

colluding nodes?

!42

J. Bell GMU CS 475 Spring 2018

Blockchains
• Solution: make it hard for participants to take over

the network; provide rewards for participants so
they will still participate

• Each participant stores the entire record of
transactions as blocks

• Each block contains some number of transactions
and the hash of the previous block

• All participants follow a set of rules to determine if
a new block is valid

!43

h0 h1 h2 h3 h4 h6 h7 h8 hn dn

J. Bell GMU CS 475 Spring 2018

Blockchains
• How do we limit participation?
• Require a “proof of work”
• For the network to accept a new block, it must

meet the following requirement:
• hash(block,nonce) < target
• target is picked a priori
• nonce is a random value that the client is trying

to guess

!44

J. Bell GMU CS 475 Spring 2018

Proof of work
• Reminder: hashing

• Takes some arbitrarily long input, produces a
fixed-length

• Same input gives same output
• Making a subtle change in input can result in

unpredictable change of output
• Proof of work:

• hash(block data, nonce) < target
• Requires brute force

!45

J. Bell GMU CS 475 Spring 2018

Proof of work
• Each node that is trying to make a new block is

called a miner
• Participants who want to make a transaction need

to do so with the help of a miner, who will put it in a
block

• Miners get paid to create blocks:
• Transaction fees (roughly ~$0.10)
• Reward for making a new block (currently 12.5

btc)

!46

J. Bell GMU CS 475 Spring 2018

Blockchain's view of consensus

!47

h1 h2 h3 h4Miner 1:

Miner 2: h1 h2 h3 h4

h51

h52

Miner 3: h1 h2 h3 h4 h52 h62

“Longest chain rule”
When is a block truly safe?

J. Bell GMU CS 475 Spring 2018

Attacks
• Worst case: attacker has 99% of mining capacity

!48

h1 h2 h3Miner 1:

With massive computation power, can rewrite history: nobody
can prove which way it was supposed to be

h11 h21 h31 h41Miner 2:

h11 h21 h31 h41Miner 3:

h11 h21 h31 h41Miner 4:

J. Bell GMU CS 475 Spring 2018

Blockchain & Trust
• Miners don't trust people submitting transactions

• If you accept an invalid transaction then try to
include it in your block, block is rejected

• Miners don't trust each other
• If you include invalid transactions: rejected

• Nobody trusts miners
• Requires expending effort to get a new block in

!49

